Summary

一个铁(II)的实验室模拟的前寒武纪富海洋上升流系统探索光合细菌生长

Published: July 24, 2016
doi:

Summary

我们在实验室规模的垂直流通柱模拟了前寒武纪海洋铁质系统上涌。我们的目标是了解O 2和Fe(II)如何地球化学剖面演变为蓝藻产生O 2。结果表明,由于通过光合作用产生氧气的Fe(II)氧化建立chemocline的。

Abstract

对于一些前寒武纪条状铁层(BIF)的沉积的常规概念上的假设进行了二价铁的[Fe(Ⅱ)〕从寒武纪海洋热液源上升流是由分子氧氧化[O 2]由蓝藻生产。最古老的BIF,在约2.4十亿年(戈瑞)前大氧化事件(GOE)之前沉积,可以通过铁(II)的直接氧化由缺氧条件下不产氧photoferrotrophs已经形成。至于测试,根据不同的生物情景发展地球化学和矿物学图案的方法,我们设计了一个长40厘米的垂直流过柱来模拟海洋富含系统上涌的代表远古海洋上的实验室规模缺氧的Fe(II) 。气缸中填充的多孔玻璃珠基质稳定地球化学梯度,以及铁定量的液体样品可以采取整个水柱。溶解氧检测非侵入性通过从外部光极。从从底部,从上一个独特的光梯度,以及在水体中蓝藻目前参与的Fe(II)的上涌通量生物实验,对铁的形成显示清晰证据的结果(III)矿物沉淀和chemocline发展铁之间(Ⅱ)和O 2。此列允许我们检验假设为通过模拟海洋前寒武纪的条件下培养蓝藻(和将来photoferrotrophs)形成的BIF的。此外,我们推测,我们的专栏概念允许各种化学和物理环境的模拟 – 包括浅海或湖泊沉积物。

Introduction

寒武纪(4.6到0.541戈瑞前)大气经历了光合作用产生的氧逐渐积聚(O 2),也许在所谓的“大氧化事件”(GOE)阶跃变化约2.4戈瑞打断以前,又在新元古代(1至0.541戈瑞前)作为大气中的O 2走近现代化水平1。蓝藻能够氧光合作用2的第一生物的进化残余。地球化学证据和模拟研究支持沿岸浅水环境中窝藏蓝藻或能够氧光合作用或含氧的光养生物的活跃的社区,产生以下主要缺氧气氛3-5海洋表面局部氧绿洲的作用。

条状铁层的海水整个寒武纪点的铁沉积(内建函数)(II)铁(Fe(II))作为一个主要的地球化学Ç海水onstituent,至少在当地,他们的沉积过程。一些最大的BIF都是深水沉积,形成了大陆架和斜坡。铁沉积量为与主要大陆( ,风化)源的质量平衡的观点来看是不相容的。因此,大部分的铁必须从镁铁质或铁质海底地壳6热液蚀变提供。铁的速率的估计沉积沿海环境的外侧是通过上升流7供给到海洋表面用铁(Ⅱ)相一致。为了使铁在上涌电流被输送,必须已存在于缩小,移动的形式 – 的Fe(Ⅱ)。在BIF保存铁的平均氧化态为2.4 8和它一般认为BIF保留铁沉积的Fe(Ⅲ),上升流的Fe时(II)被氧化,可能是由氧形成。因此,探索沿坡environme潜在的Fe(II)氧化机制NTS重要的是要了解BIF如何形成的。此外,海洋沉积物成品地球化学特征已经确定了铁质的条件,其中的Fe(II)是目前在缺氧水柱,是整个前寒武纪海洋的持续性特征,可能不被限于时间和地点其中,BIF沉积9。因此,至少有两个十亿多年的地球历史,在浅海的Fe(II)和O 2之间的氧化还原界面有可能司空见惯。

许多研究利用现代的网站,是前寒武纪海洋的不同功能的化学和/或生物类似物。一个很好的例子是铁锈色的湖泊,铁(II)是稳定的,并出现在阳光照射的地表水,而光合活性(包括蓝细菌)检测10-13。这些研究结果提供洞察到富氧到缺氧/ FER的地球化学和微生物的特性ruginous chemocline。然而,这些位点通常在物理上与小垂直混合14,而不是在一个上升流系统中发生的化学接口分层,并且被认为是支持最氧气生产前寒武纪时间4。

一个自然的模拟探索海洋的氧气绿洲发展的缺氧气氛下,并在阳光照射面水柱的Fe(II)丰富的上涌系统不可用现代的地球上。因此,需要能够模拟铁质上升流区并且还支持蓝藻和photoferrotrophs生长的实验室系统。代表前寒武纪海水的理解和微生物过程的识别及其与上涌水介质的互动促进了理解,并可以以充分了解古代地球上独特的生物地球化学过程补充从岩石记录获得的信息。 </p>

为此目的,一个实验室规模的柱的目的是在其中的Fe(II)的富含海水培养基(pH为中性的)泵入塔的底部,并从顶部抽出。光照在顶部设置来创建支持蓝藻的生长在顶端3cm的宽4厘米“透光区”。天然环境通常分层,通过理化梯度,如盐度或温度稳定。为了稳定在一个实验室规模的水柱,塔筒中填充的多孔玻璃珠基质,有助于保持成立,实验过程中形成的地球化学模式。连续 N 2 / CO 2气体流量施加到冲洗塔的顶部空间,以维持缺氧气氛反射之前GOE 15的海洋。 (II)Fe的恒定通量成立后,蓝藻在整个柱接种,和它们的growth的通过细胞计数通过取样口取出的样品进行监测。氧气是通过将氧敏感光极箔上柱筒和测量的内壁用的光纤从塔外进行原位监测。水溶液的Fe形态通过除去样本深度分辨水平取样端口量化并与铁试剂法进行分析。非生物控制实验,结果证明证明的概念 – ,古水柱实验室规模的模拟,从大气中分离保持,是可以实现的。蓝藻生长和产生的氧,和Fe(II)和氧之间的反应是可解析的。这里,对于设计,制备,装配,执行和这样的列的采样的方法被提出,以结果一起从塔84小时运行,同时用海洋蓝细菌聚球藻接种。 7002。

Protocol

1.培养用培养基的制备注意:所要求的设备,化学品和供应的培养基的制备的信息列于表1中括号斜体字母数字代码是指表2中逐项和图1中所示的装置。 制备5升海洋光合有机体(MP)的培养基(以下称为“介质”),按照Wu等人 16的协议。使用缺氧和无菌的1M HCl或0.5M的NACO 3调节pH值至6.8。作为铁源(II)中,?…

Representative Results

对照实验 非生物控制实验(10天)表现出一致的低浓度的氧(O 2 <0.15毫克/升)与铁(Ⅱ无显著波动)-profile整个涌水柱。析出物的形成(大概的Fe(III)(oxyhydr-)氧化物)在介质中贮存,并在整体的Fe(Ⅱ)浓度为500μM,以440μM的贯通连接的轻微下降超过10天表明一些氧气扩散橡胶制( 例?…

Discussion

在寒武纪海洋微生物群落受到管制,或修改为,他们的活动的结果和当时的地球化学条件。在解释BIF的起源,研究人员推断一般微生物的基础上,沉积或BIF的地球化学特征, 例如 ,史密斯等人 23和约翰逊等人 24的存在或活动。现代生物在有地球化学类似物古环境现代环境的研究也是一个有价值的方法, 例如,克罗等人 11和Koeksoy 等<sup…

Declarações

The authors have nothing to disclose.

Acknowledgements

马克诺德霍夫协助管道连接的设计和实施。艾伦司徒卢威帮助选择和购买二手设备。

Materials

Widdel flask (5 L) Ochs 110015 labor-ochs.de
Glass bottles (5 L) Rotilabo Y682.1 carlroth.com
Glass pipettes (5 mL) 51714 labor-ochs.de
0.22 µm Steritop filter unit (0.22 µm Polyethersulfone membrane) Millipore X337.1 carlroth.com
Aluminum foil
Sterile Luer Lock glass syringe, filled with cotton C681.1 carlroth.com
Luer Lock stainless steel needles (150 mm, 1.0 mm ID) 201015 labor-ochs.de
NaCl Sigma 433209 sigmaaldrich.com
MgSO4 Sigma 208094 sigmaaldrich.com
CaCl2 Sigma C4901 sigmaaldrich.com
NH4Cl Sigma A9434 sigmaaldrich.com
KH2PO4 Sigma P5655 sigmaaldrich.com
KBr Sigma P3691 sigmaaldrich.com
KCl Sigma P9541 sigmaaldrich.com
Glass cylinder Y310.1 carlroth.com
Glass wool 7377.2 carlroth.com
Glass beads (ø 0.55 – 0.7 mm) 11079105 biospec.com
Butyl rubber stopper (ø 1.2 cm) 271024 labor-ochs.de
Petri Dish, glass (ø 8.0 cm) T939.1 carlroth.com
Polymers glue OTTOSEAL S68 adchem.de
Optical oxygen sensor foil (for oxygen analysis, see below) – on request – presens.de
Rubber tubing (35 mm, 7 mm ID) 770350 labor-ochs.de
Luer Lock tube connector (3.0 mm, luer lock male = LLM) P343.1 carlroth.com
Luer Lock tube connector (3.0 mm, luer lock female = LLF) P335.1 carlroth.com
Rubber tubing (25 mm, 0.72 mm ID) 2600185 newageindustries.com
Rubber tubing (50 mm, 7 mm ID) 770350 labor-ochs.de
Luer Lock stainless steel needle (150 mm, 1.0 mm ID) 201015 labor-ochs.de
Luer Lock glass syringe (10 mL) C680.1 carlroth.com
Loose cotton 
Butyl rubber stopper (ø 1.75 cm) 271050 labor-ochs.de
Stainless steel needle (40 mm, 1.0 mm ID) Sterican 4665120 bbraun.de
Luer Lock stainless steel needle (150 mm, 1.5 mm ID) 201520 labor-ochs.de
position: Luer Lock female connector part at C.7
Polymers glue OTTOSEAL S68 adchem.de
Stainless steel needle (120 mm, 0.7 mm ID) Sterican 4665643 bbraun.de
Rubber tubing (40 mm, 0.74 mm ID) 2600185 newageindustries.com
Heat shrink tubing (35 mm, 3 mm ID shrunk) 541458 – 62 conrad.de
Tube clamp STHC-C-500-4 tekproducts.com
Luer Lock tube connector (1.0 mm, LLF) P334.1 carlroth.com
Luer Lock plastic cap (LLM) CT69.1 carlroth.com
Glass bottle (5 L) Rotilabo Y682.1 carlroth.com
Butyl rubber stopper (for GL45) 444704 labor-ochs.de
Stainless steel capillary (300 mm, 0.74 mm ID) 56736 sigmaaldrich.com
Stainless steel capillary (50 mm, 0.74 mm ID) 56737 sigmaaldrich.com
Shrink tubing (35 mm, 3 mm ID shrunk) 541458 – 62 conrad.de
Rubber tubing (100 mm, 0.74 mm ID) 2600185 newageindustries.com
Luer Lock tube connector (1.0 mm, LLF) P334.1 carlroth.com
Luer Lock glass syringe (10 mL) C680.1 carlroth.com
Loose cotton 
Butyl rubber stopper (ø 1.75 cm) 271050 labor-ochs.de
Stainless Steel needle (40 mm, 0.8 mm ID) Sterican 4657519 bbraun.de
Luer Lock glass syringe (5 mL) C679.1 carlroth.com
Butyl rubber stopper (ø 1.75 mm) 271050 labor-ochs.de
Stainless steel needle (40 mm, 0.8 mm ID) Sterican 4657519 bbraun.de
Rubber tubing (40 mm, 0.74 mm ID) 2600185 newageindustries.com
Glass bottle (2 L) Rotilabo X716.1 carlroth.com
Butyl rubber stopper (for GL45) 444704 labor-ochs.de
Stainless steel capillary (50 mm, 0.74 mm ID) 56736 sigmaaldrich.com
Rubber tubing (30 mm x 0.74 mm ID) 2600185 newageindustries.com
Rubber tubing (100 mm x 0.74 mm ID) 2600185 newageindustries.com
Luer Lock tube connector (1.0 mm, LLF) P334.1 carlroth.com
Luer Lock 3-way connector (LLF, 2x LLM) 6134 cadenceinc.com
Light source Samsung SI-P8V151DB1US samsung.com
Peristalic pump Ismatec EW-78017-35 coleparmer.com
Pumping tubing (0.89 mm ID) EW-97628-26 coleparmer.com
Stainless steel capillary (200 mm, 0.74 mm ID) 56736 sigmaaldrich.com
Stainless steel capillary (400 mm, 0.74 mm ID) 56737 sigmaaldrich.com
Supel-Inert Foil (Tedlar – PFC) gas pack (10 L) 30240-U sigmaaldrich.com
Rubber tube (30 mm, 6 mm ID) 770300 labor-ochs.de
Luer Lock tube connector (3.0 mm, LLM) P343.1 carlroth.com
Luer Lock tube connector (3.0 mm, LLF) P335.1 carlroth.com
Gas-tight syringe (20 mL) C681.1 carlroth.com
Bunsen burner
Fiber optic oxygen meter for oxygen quantification Presens TR-FB-10-01 presens.de
Vacuum pump
Silicone glue for oxygen optodes Presens PS1 presens.de

Referências

  1. Lyons, T. W., Reinhard, C. T., Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature. 506 (7488), 307-315 (2014).
  2. Raymond, J., Blankenship, R. E. The origin of the oxygen-evolving complex. Coord. Chem. Rev. 252 (3-4), 377-383 (2008).
  3. Kendall, B., Reinhard, C. T., Lyons, T., Kaufman, A. J., Poulton, S. W., Anbar, A. D. Pervasive oxygenation along late Archaean ocean margins. Nature Geosci. 3 (9), 647-652 (2010).
  4. Olson, S. L., Kump, L. R., Kasting, J. F. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362 (1), 35-43 (2013).
  5. Satkoski, A. M., Beukes, N. J., Li, W., Beard, B. L., Johnson, C. M. A redox-stratified ocean 3.2 billion years ago. Earth Planet. Sci. Lett. 430 (1), 43-53 (2015).
  6. Holland, H. D. Oceans – Possible Source of Iron in Iron-Formations. Econ. Geol. 68 (7), 1169-1172 (1973).
  7. Holland, H. D., Lazar, B., Mccaffrey, M. Evolution of the Atmosphere and Oceans. Nature. 320 (6057), 27-33 (1986).
  8. Klein, C., Beukes, N. J., Schopf, J. W., Klein, C. Time distribution, stratigraphy, and sedimentologic setting, and geochemistry of Precambrian iron-formations. The Proterozoic Biosphere. , 139-146 (1992).
  9. Poulton, S. W., Canfield, D. E. Ferruginous Conditions: A Dominant Feature of the Ocean through Earth’s History. Elements. 7 (2), 107-112 (2011).
  10. Busigny, V., et al. Iron isotopes in an Archean ocean analogue. Geochim. Cosmochim. Acta. 133, 443-462 (2014).
  11. Crowe, S. A., et al. Photoferrotrophs thrive in an Archean Ocean analogue. PNAS. 105 (41), 15938-15943 (2008).
  12. Jones, C., et al. Biogeochemistry of manganese in ferruginous Lake Matano, Indonesia. Biogeosciences. 8 (10), 2977-2991 (2011).
  13. Lliros, M., et al. Pelagic photoferrotrophy and iron cycling in a modern ferruginous basin. Sci. Rep. 5 (13803), (2015).
  14. Koeksoy, E., Halama, M., Konhauser, K. O., Kappler, A. Using modern ferruginous habitats to interpret Precambrian banded iron formation deposition. Int. J. Astrobiol. , 1-13 (2015).
  15. Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature. 396 (6710), 450-453 (1998).
  16. Wu, W. F., et al. Characterization of the physiology and cell-mineral interactions of the marine anoxygenic phototrophic Fe(II) oxidizer Rhodovulum iodosum – implications for Precambrian Fe(II) oxidation. FEMS Microbiol. Ecol. 88 (3), 503-515 (2014).
  17. Hungate, R. E., Macy, J. The Roll-Tube Method for Cultivation of Strict Anaerobes. Bull. Ecol. Res. Comm. 17 (1), 123-126 (1973).
  18. Van Baalen, C. Studies on marine blue-green algae. Bot. mar. 4 (1-2), 129-139 (1962).
  19. Sakamoto, T., Bryant, D. A. Growth at low temperature causes nitrogen limitation in the cyanobacterium Synechococcus sp. PCC 7002. Arch. Microbiol. 169 (1), 10-19 (1998).
  20. Swanner, E. D., Mloszewska, A. M., Cirpka, O. A., Schoenberg, R., Konhauser, K. O., Kappler, A. Modulation of oxygen production in Archaean oceans by episodes of Fe(II) toxicity. Nature Geosci. 8 (2), 126-130 (2015).
  21. Stookey, L. L. Ferrozine – a New Spectrophotometric Reagent for Iron. Anal. Chem. 42 (7), 779-784 (1970).
  22. Fitch, M. W., Koros, W. J., Nolen, R. L., Carnes, J. R. Permeation of Several Gases through Elastomers, with Emphasis on the Deuterium Hydrogen Pair. J. Appl. Polym. Sci. 47 (6), 1033-1046 (1993).
  23. Smith, A. J. B., Beukes, N. J., Gutzmer, J. The Composition and Depositional Environments of Mesoarchean Iron Formations of the West Rand Group of the Witwatersrand Supergroup, South Africa. Econ. Geol. 108 (1), 111-134 (2013).
  24. Johnson, C. M., Beard, B. L., Klein, C., Beukes, N. J., Roden, E. E. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim. Cosmochim. Acta. 72 (1), 151-169 (2008).
  25. Krepski, S. T., Emerson, D., Hredzak-Showalter, P. L., Luther, G. W., Chan, C. S. Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils. Geobiology. 11 (5), 457-471 (2013).
  26. Posth, N. R., Konhauser, K. O., Kappler, A. Microbiological processes in banded iron formation deposition. Sedimentology. 60 (7), 1733-1754 (2013).
  27. Maliva, R. G., Knoll, A. H., Simonson, B. M. Secular change in the Precambrian silica cycle: Insights from chert petrology. Geol. Soc. Am. Bull. 117 (7-8), 835-845 (2005).
  28. Kappler, A., Pasquero, C., Konhauser, K. O., Newman, D. K. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology. 33 (11), 865-868 (2005).
  29. Krepski, S. T., Hanson, T. E., Chan, C. S. Isolation and characterization of a novel biomineral stalk-forming iron-oxidizing bacterium from a circumneutral groundwater seep. Environ. Microbiol. 14 (7), 1671-1680 (2012).
  30. Czaja, A. D., Johnson, C. M., Beard, B. L., Roden, E. E., Li, W. Q., Moorbath, S. Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland). Earth. Planet. Sci. Lett. 363 (1), 192-203 (2013).
  31. Melton, E. D., Schmidt, C., Kappler, A. Microbial iron(II) oxidation in littoral freshwater lake sediment: the potential for competition between phototrophic vs. nitrate-reducing iron(II)-oxidizers. Front. Microbiol. 3 (197), 1-12 (2012).
check_url/pt/54251?article_type=t

Play Video

Citar este artigo
Maisch, M., Wu, W., Kappler, A., Swanner, E. D. Laboratory Simulation of an Iron(II)-rich Precambrian Marine Upwelling System to Explore the Growth of Photosynthetic Bacteria. J. Vis. Exp. (113), e54251, doi:10.3791/54251 (2016).

View Video