Summary

成像清除胚胎和出生后心脏在单细胞分辨率

Published: October 07, 2016
doi:

Summary

We describe a protocol to volumetrically image fluorescent protein labeled cells deep inside intact embryonic and postnatal hearts. Utilizing tissue-clearing methods in combination with whole mount staining, single fluorescent protein-labeled cells inside an embryonic or postnatal heart can be imaged clearly and accurately.

Abstract

在全心脏水平单克隆跟踪和分析可以心脏发育过程中确定心脏祖细胞的行为和分化,并允许正常和异常的心脏形态发生的细胞和分子基础的研究。回顾单克隆分析最近的新兴技术使心脏形态发生在单细胞分辨率的研究是可行的。然而,组织的不透明度和心脏的成像深度的光散射在单细胞分辨率提高阻碍全心脏成像。为了克服这些障碍,整个胚胎清算系统,可以使心脏的高度透明为照明和检测必须发展。幸运的是,在过去的几年中,已报告的全生物结算系统如透明度,爱生雅 ,SeeDB,ClearT,3DISCO,CUBIC,DBE,BABB和PACT许多方法。这个实验有兴趣卡的细胞和分子机制IAC形态。心脏发育过程中ROSA26-纸屑系统稀疏标签细胞;最近,我们建立了单细胞系通过ROSA26 Cre重组ERT2跟踪。我们适应几个全胚胎清算方法,包括了Sca LE和立方(清晰,通畅脑成像的鸡尾酒和计算分析)来清除组合与胚胎整装染色心脏内部的图像单一克隆。该心脏在单细胞分辨率被成功成像。我们发现的Sca 可以清除胚胎心脏,但不能有效地清除产后心脏,而CUBIC可以清除产后心脏,但损害胚胎心脏的组织溶解。此处所描述的方法将允许基因功能的研究在心脏形态发生,这反过来,可以揭示先天性心脏缺陷的细胞和分子基础中的单个克隆的分辨率。

Introduction

心脏形态发生是需要的四种不同类型的心脏祖细胞的时空组织进入心脏的不同扇区的连续事件,并且还需要多基因调控网络来协调这一过程以形成功能性心脏1,2。心脏规范,分化,图案,和室成熟的心源性转录因子调控3。基因突变或这些因素在心脏祖细胞转录后像差可能导致要么胚胎致死或先天性心脏缺陷(CHD)4。心脏形态发生的研究需要在三维(3D)固有的结构细节和单标记心脏祖细胞系心脏发育过程中的跟踪将促进心脏形态的理解的理解。一些高分辨率的基础部分断层扫描方法已经在日被开发Ë过去几十年来的图像器官结构5,6;然而,这些方法需要昂贵的,专门的仪器,广泛劳动,并且缺乏在单细胞分辨率的详细结构组织在最终体积重建图像7,8。

在单细胞水平的3D体积成像提供研究祖细胞分化和细胞行为体内 7的装置。然而,组织光散射仍然是主要的障碍深完整的心脏内的3D成像的细胞和结构。脂质是光散射的一个主要来源,和去除脂质和/或脂质和它们的周围区域之间的折射率差的调整的是用于提高组织透明度8潜力的方法。在过去的几年中,一些组织结算方法的发展,从而降低组织的不透明性和光散射,像BABB(苄醇和苄benzoatË混合物)和DBE(四氢呋喃和dibenzylether);但在这些方法中,荧光猝灭仍然是一个问题8-10。溶剂为基础的亲水性的方法,如SeeDB(果糖/硫代甘油)和3DISCO(二氯甲烷/ dibenzylether),保持荧光信号,但不使整个器官透明7,8,11。相比较而言,净度组织清除方法呈现器官透明的,但它需要一个专门的电泳装置以除去脂质8,12一样,PACT(无源清晰度技术),这也需要水凝胶包埋7,13。有关所有可用的组织清除方法的详细信息,请参阅表1 Richardson和利希特曼。7。

2011年,哈马等人偶然发现了一种亲水的混合物“的Sca '(尿素,甘油和Triton X-100混合物)呈现小鼠大脑和胚胎transpar耳鼻喉科而完全从克隆标记保持14荧光信号。这允许完整的大脑中的几个毫米和神经元群体和突起的大规模重建的深度成像以亚细胞的分辨率。须崎等人。进一步完善了Sca 加入氨基醇,并制定了“CUBIC”(清晰,通畅脑成像的鸡尾酒和计算分析)组织清除的方法,从而增加磷脂溶解,降低了结算时间,并允许多色荧光成像8。在本研究中,心脏发生在服用心脏内线优势在SCA 和立方组织清算技术和高分辨率三维光学切片,单个克隆使用Rosa26Cre ERT2 15,R26R-纸屑 16,αMHCCre重组酶17, 肌钙蛋白Cre重组酶被追踪18, </strong> NFATC1 Cre重组酶 19,ROSA26-mTmG(mTmG)20鼠标线。整个装载染色(WMS)方法的组合预先21,22与组织结算方法还允许在标记的克隆其他蛋白质的染色和对它们的行为在3D体积上下文中研究开发的。组织清除和WMS的组合允许更好地理解不同的基因和蛋白质的心脏发育过程中的作用,并先天性心脏缺陷的病因。这个协议可以被应用开发过程中来研究其他祖细胞分化,细胞行为和器官形态发生的事件。

Protocol

所有动物实验的机构动物护理和使用委员会(IACUC)奥尔巴尼医学院根据NIH指南照顾和实验动物使用批准并执行。 1.解决方案的准备注:Rosa26Cre ERT2 15,R26R-16五彩纸屑 ,αMHCCre重组酶17, 和ROSA26-mTmG(mTmG)20鼠标线被购得肌钙蛋白T-18的Cre来自蛟博士在阿拉巴马大学的礼物NFATC1 Cr…

Representative Results

成像清除胚胎心脏脊椎动物心脏的形成是一个spatiotemporally调节形态发生过程,并且取决于从四个不同来源1的组织和祖细胞的分化。从心脏月牙的第一场心脏细胞会向着腹中线折叠,形成线性心脏管。来自第二心脏视野中的细胞,最初驻留dorsomedially到第一心脏字段,随后转位到咽和内脏中胚层,从那里它们迁移到线性?…

Discussion

胚胎隔离是一个非常关键的步骤。 E9.5胚胎的大小很脆弱的,小的,所以格外小心,应注意不要隔离时损坏胚胎/心脏结构。非胚层外包围胚胎/心脏成像应该在整个胚胎时特别小心取出。这使得抗体和清算混合穿透深胚胎组织内部,而且在成像时去除背景信号有所帮助。包括对PECAM抗体,乙酰化α微管蛋白和β1整合多种抗体进行了检查,并全部被成功检测(数据未显示)33。这证明了分子完?…

Declarações

The authors have nothing to disclose.

Acknowledgements

We thank M.W. laboratory members for scientific discussion. This work is supported by AHA [13SDG16920099] to M.W., and by National Heart, Lung, and Blood Institute grants [R01HL121700] to M.W. Images were captured in the Imaging Core Facility at the Albany Medical College.

Materials

2,2′,2′’-nitrilotriethanol  Sigma Aldrich 90279
4% Paraformaldehyde in PBS Affymetrix 19943
BSA Fischer Scientific  BP16000
N,N,N’,N’-tetrakis(2-hydroxypropyl) ethylenediamine  Sigma Aldrich 122262
Phosphate Buffer Saline Sigma Aldrich P5368-10PAK
Triton X-100 Sigma Aldrich T8787
Urea Sigma Aldrich U-1250
Sucrose Sigma Aldrich 84097
Glycerol Sigma Aldrich G8773
Tamoxifen Sigma Aldrich T5648
Sunflower seed oil Sigma Aldrich S5007
Tween 20 Sigma Aldrich P1379
PECAM (CD31) BD Pharmingen  550274
Alexa Fluor 647  Invitrogen A-21247
DAPI nuclear stain Sigma Aldrich D9542
37oC Incubator Thermoscientific Fischer Heratherm, Compact Microbiological Incubators
48 well plates Cell Treat 229148
Analytical Balance Metler Toledo PB153-S/FACT
Confocal microscope Zeiss Zeiss 510 confocal microscope
Disecting Microscope Unitron Z850
Fluorescent microscope Zeiss Observer. Z1
Germinator 500 Glass Bead Sterilizer CellPoint Scientific GER-5287-120V
Light Source SCHOTT ACE I
Pair of Scissors Fine Science Tools 14084-08
Petri dish 60x15mm  TPP Techno Plastic Products AG 93060
Rocker II  Platform Rocker Boekel Scientific 260350
Scintillating tubes Fischer Scientific  03-337-26
Transfer pipette Samco Scientific 202
Tweezers Fine Science Tools 11251-20

Referências

  1. Vincent, S. D., Buckingham, M. E. How to make a heart: the origin and regulation of cardiac progenitor cells. Curr Top Dev Biol. 90, 1-41 (2010).
  2. Olson, E. N. A decade of discoveries in cardiac biology. Nat Med. 10, 467-474 (2004).
  3. Olson, E. N. Gene regulatory networks in the evolution and development of the heart. Science. 313, 1922-1927 (2006).
  4. Bruneau, B. G. The developmental genetics of congenital heart disease. Nature. 451, 943-948 (2008).
  5. Mohun, T. J., Weninger, W. J. Embedding embryos for high-resolution episcopic microscopy (HREM). Cold Spring Harb Protoc. , 678-680 (2012).
  6. Soufan, A. T., et al. Three-dimensional reconstruction of gene expression patterns during cardiac development. Physiol Genomics. 13, 187-195 (2003).
  7. Richardson, D. S., Lichtman, J. W. Clarifying Tissue Clearing. Cell. 162, 246-257 (2015).
  8. Susaki, E. A., et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 157, 726-739 (2014).
  9. Becker, K., Jahrling, N., Saghafi, S., Weiler, R., Dodt, H. U. Chemical clearing and dehydration of GFP expressing mouse brains. PLoS One. 7, e33916 (2012).
  10. Erturk, A., et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc. 7, 1983-1995 (2012).
  11. Ke, M. T., Fujimoto, S., Imai, T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci. 16, 1154-1161 (2013).
  12. Chung, K., et al. Structural and molecular interrogation of intact biological systems. Nature. 497, 332-337 (2013).
  13. Yang, B., et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell. 158, 945-958 (2014).
  14. Hama, H., et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci. 14, 1481-1488 (2011).
  15. Badea, T. C., Wang, Y., Nathans, J. A noninvasive genetic/pharmacologic strategy for visualizing cell morphology and clonal relationships in the mouse. J Neurosci. 23, 2314-2322 (2003).
  16. Livet, J., et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature. 450, 56-62 (2007).
  17. Agah, R., et al. Gene recombination in postmitotic cells. Targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. J Clin Invest. 100, 169-179 (1997).
  18. Jiao, K., et al. An essential role of Bmp4 in the atrioventricular septation of the mouse heart. Genes Dev. 17, 2362-2367 (2003).
  19. Wu, B., et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell. 151, 1083-1096 (2012).
  20. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L., Luo, L. A global double-fluorescent Cre reporter mouse. Genesis. 45, 593-605 (2007).
  21. Wu, M., et al. Epicardial spindle orientation controls cell entry into the myocardium. Dev Cell. 19, 114-125 (2010).
  22. Zhao, C., et al. Numb family proteins are essential for cardiac morphogenesis and progenitor differentiation. Development. 141, 281-295 (2014).
  23. Kaufman, M. H., Kaufman, M. H. . The atlas of mouse development. , (1992).
  24. Nagy, A. . Manipulating the mouse embryo : a laboratory manual. , (2003).
  25. Buckingham, M., Meilhac, S., Zaffran, S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 6, 826-835 (2005).
  26. Kelly, R. G., Buckingham, M. E. The anterior heart-forming field: voyage to the arterial pole of the heart. Trends Genet. 18, 210-216 (2002).
  27. Verzi, M. P., McCulley, D. J., De Val, S., Dodou, E., Black, B. L. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev Biol. 287, 134-145 (2005).
  28. Ward, C., Stadt, H., Hutson, M., Kirby, M. L. Ablation of the secondary heart field leads to tetralogy of Fallot and pulmonary atresia. Dev Biol. 284, 72-83 (2005).
  29. Echelard, Y., Vassileva, G., McMahon, A. P. Cis-acting regulatory sequences governing Wnt-1 expression in the developing mouse CNS. Development. 120, 2213-2224 (1994).
  30. Jiang, X., Rowitch, D. H., Soriano, P., McMahon, A. P., Sucov, H. M. Fate of the mammalian cardiac neural. Developement. 127, 1607-1616 (2000).
  31. Viragh, S., Challice, C. E. The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat Rec. 201, 157-168 (1981).
  32. Wu, M., Li, J. Numb family proteins: novel players in cardiac morphogenesis and cardiac progenitor cell differentiation. Biomolecular concepts. 6, 137-148 (2015).
  33. Li, J., et al. Single-Cell Lineage Tracing Reveals that Oriented Cell Division Contributes to Trabecular Morphogenesis and Regional Specification. Cell reports. 15, 158-170 (2016).
  34. Alkaabi, K. M., Yafea, A., Ashraf, S. S. Effect of pH on thermal- and chemical-induced denaturation of GFP. Appl Biochem Biotechnol. 126, 149-156 (2005).
  35. Captur, G., et al. Morphogenesis of myocardial trabeculae in the mouse embryo. J Anat. , (2016).
check_url/pt/54303?article_type=t

Play Video

Citar este artigo
Shaikh Qureshi, W. M., Miao, L., Shieh, D., Li, J., Lu, Y., Hu, S., Barroso, M., Mazurkiewicz, J., Wu, M. Imaging Cleared Embryonic and Postnatal Hearts at Single-cell Resolution. J. Vis. Exp. (116), e54303, doi:10.3791/54303 (2016).

View Video