Summary

微流控缓冲液更换为无干扰微/纳米颗粒细胞工程

Published: July 10, 2016
doi:

Summary

这个协议描述了使用惯性基于微流体缓冲交换策略的纯化微/纳米工程细胞与未结合的颗粒的有效消耗。

Abstract

与活性成分载微/纳米工程细胞(NPS)正在成为一个日益流行的方法,以提高本地治疗特性,使生物成像和控制细胞表型。一个关键尚未充分解决的问题是,仍无法通过常规的离心容易地除去细胞标记后未结合颗粒的显著数目。这导致增加的生物成像的背景噪声,并且可以赋予变革效应到相邻的非靶细胞。在这个协议中,我们提出称为院长流分离(DFF)惯性微流体为基础的缓冲区交换策略,以高通量的方式免费纳米粒子标记细胞有效地分离。发达螺旋微型装置便于悬浮在新的缓冲溶液纯化的细胞(THP-1和干细胞)的连续集合(> 90%细胞回收),同时实现未结合的荧光染料或染料加载纳米粒(SIL的> 95%的耗尽ICA或PLGA)。这个单步,基于大小的细胞纯化策略使高细胞处理吞吐量(10 6个细胞/分),并且是微/纳米工程细胞大容积细胞纯化以实现无干扰的临床应用是非常有用的。

Introduction

由代理加载微/纳米颗粒(纳米颗粒)的工程细胞是一种简单的,基因组整合-自由,和通用的方法,以提高生物成像能力和增加/再生医学补充其天然的治疗性质。1-3蜂窝修改都通过标记所获得的质膜或细胞质剂加载纳米粒的过量浓度以饱和结合位点。然而,这种方法的主要缺点是留在溶液中后细胞标记过程未结合颗粒的显著数量时,其可以潜在地混淆颗粒工程细胞的精确识别或4,5-复杂化的治疗效果。此外,接触含变革纳米粒在浓度过高剂(生长因子,皮质类固醇 )可导致细胞毒性和误导暴露可引起对非靶细胞意想不到的后果。甚至包括o颗粒载体F“生物相容性”的材料[ 例如 ,聚(乳酸共乙醇酸),PLGA]可以煽动在某些条件下,以及有效的免疫细胞反应。6这与免疫功能受损( 例如 ,类风湿性关节炎),其潜在的延迟个体特别危险全身纳米间隙。7因此,现有的引入颗粒的工程细胞的高效去除游离颗粒是非常重要的,以减少毒性和降低误导暴露于体内剂加载颗粒。

常规梯度离心常被用来改造的细胞从游离颗粒中分离,但是费力的和在批处理模式操作。此外,通过高速离心期间细胞和密度梯度介质可能损害细胞的完整性和/或影响细胞行为的组分经历剪切应力。8微流体是与SEV一个有吸引力的替代方案ERAL分离技术,包括确定性的横向位移(DLD)9,dieletrophoresis 10,11和acoustophoresis为小颗粒分离和缓冲交换应用开发12。然而,这些方法从低通量遭受(1-10微升·分钟 1),并容易堵塞的问题。活性分离如基于介电电泳的方法还需要在固有的介电电泳细胞表型或其他细胞标记的步骤来实现的分离的差异。一个更有前景的方法包括惯性微流体-颗粒或细胞的横向迁移跨越简化集中在由于在高雷诺数(Re)13显性升力(F L)不同的位置由于其高流动条件和优越的尺寸分辨率。 ,它经常被利用的规模为基础的细胞分离14,15和缓冲交换应用。16-18 HoweveR,缓冲液交换性能仍然很差与~10-30%污染物的溶液,作为分离的细胞通常保持接近原始和新的缓冲液之间的边界。16-18更重要的是,靶细胞的大小分布是相似的实现精确惯性聚焦和分离从其中提出了一个问题特别是在异质大小的细胞类型,如间充质干细胞(MSC)的处理的原缓冲溶液19

我们先前已开发出一种新的惯性微流体细胞分选技术称为迪安流分离(DFF),用于使用一个2入口,2-插座螺旋微器件隔离循环肿瘤细胞(的CTC)从全血20和细菌21。在此视频协议中,我们将描述标签的THP-1(人急性单核细胞白血病细胞系)的悬浮液单核细胞(〜15微米)和干细胞(10-30微米)用钙黄绿素-L的方法oaded纳米粒,其次是DFF螺旋微型为标记的细胞和除去未纳米粒的有效回收的制造和操作。22这种单一步骤纯化策略使标记的悬浮液,悬浮于新鲜缓冲液中没有离心粘附细胞连续恢复。此外,它可以处理高达10万个细胞·毫升-1,细胞密度为顺应再生医学应用。

Protocol

间充质干细胞和单核细胞的纳米1.(NPS)标签在Dulbecco改良的Eagle培养基(DMEM)培养间充质干细胞(MSCs)补充有10%胎牛血清(FBS)和抗生素,以≥80%汇合标记之前。类似地,培养的THP-1细胞(ATCC)在罗斯韦尔园区纪念研究所(RPMI)1640培养基中补充有10%FBS的至〜10 6个细胞/ ml的密度。 负载二氧化硅纳米粒子(〜500微米)用搅拌一夜钙黄绿素染料溶液(200微米)。制造使用…

Representative Results

标记与生物显像剂装载纳米粒过夜细胞后,将标记的细胞(含有自由粒子)收获并通过DFF螺旋微型纯化以除去游离的NP在单一步骤的过程( 图1A)。该2入口,2出口螺旋微通道是由工程软件设计和使用微制造SU-8光刻胶。然后将图案化的硅晶片被用作用于使用软光刻技术( 图1B)的PDMS复制品成型的模板。来执行细胞分选,而内壁入口运行在一个较高…

Discussion

本文所描述的DFF细胞纯化技术使以高通量的方式标记的细胞的快速和连续分离。这种分离方法非常适合于大样本容量或高浓度的细胞样本处理,比传统的基于膜过滤是容易长时间使用后堵塞更好。同样,基于亲和力的磁选需要这是费力又昂贵的附加细胞标记的步骤。纯化的细胞被示为在通道内保持它们的标记,由于停留时间短剂和细胞形态以及( 图3)以最小流量/剪切诱导的作用(?…

Declarações

The authors have nothing to disclose.

Acknowledgements

Kind gift of THP-1 cells from Dr. Mark Chong and assistance in microfabrication from Dr. Yuejun Kang and Dr. Nishanth V. Menon (School of Chemical and Biomedical Engineering, Nanyang Technological University) were greatly acknowledged. This project was funded by NTU-Northwestern Institute of Nanomedicine (Nanyang Technological University). H.W.H. was supported by Lee Kong Chian School of Medicine (LKCMedicine) postdoctoral fellowship.

Materials

Cell lines & Media
Mesenchymal Stem Cells (MSCs) Lonza PT-2501
Dulbecco’s modified Eagle’s medium (DMEM) Lonza 12-614F
Fetal Bovine Serum (FBS) Gibco 10270-106
THP-1 monocyte cells (THP-1) ATCC TIB-202
Roswell Park Memorial Institute (RPMI) 1640 media Lonza 12-702F
Name Company Catalog Number Comments/Description
Reagents & Materials
0.01% poly-L-lysine (PLL) Sigma-Aldrich P8920
3 mL Syringe BD 302113 Syringe 3ml Luer-Lock
60 ml Syringe BD 309653 Syringe 60ml Luer-Lock
Bovine Serum Albumin (BSA) Biowest P6154-100GR
Calcein, AM (CAM) Life Technologies C1430
Calcein Sigma-Aldrich C0875
Isopropanol Fisher Chemical #P/7507/17 HPLC Grade 2.5 L
Phosphate-Buffered Saline (PBS) Lonza 17-516Q/12
Plain Microscope Slides Fisher Scientific FIS#12-550D 75 X 25 X 1 mm
Polydimethylsiloxane (PDMS) Dow Corning SYLGARD® 184
Scotch tape 3M 21200702044 18mm x 25m
Silica NPs (∼200 μm) Sigma-Aldrich 748161 Pore size 4 nm
Syringe Tip JEC Technology 7018302 23GA .013 X .25
Trypsin-EDTA (0.25%) Life Technologies 25200-056
Tygon Tubing Spectra-Teknik 06419-01 .02X.06" 100
Name Company Catalog Number Comments/Description
Equipment
Biopsy punch Harris Uni-Core 69036-15 1.50 mm
Dessicator Scienceware 111/4 IN OD
High-speed Camera Phantom  V9.1
Inverted phase-contrast microscope  Nikon Eclipse Ti
Plasma cleaner Harrick Plasma PDC-002
Syringe Pump Chemyx CX Fusion 200

Referências

  1. Wiraja, C., et al. Aptamer technology for tracking cells’ status & function. Mol. Cell. Ther. 2, 33 (2014).
  2. Yeo, D. C., Wiraja, C., Mantalaris, A., Xu, C. Nanosensors for Regenerative Medicine. J. Biomed. Nanotech. 10, 2722-2746 (2014).
  3. Naumova, A. V., Modo, M., Moore, A., Murry, C. E., Frank, J. A. Clinical imaging in regenerative medicine. Nat. Biotechnol. 32, 804-818 (2014).
  4. Soenen, S. J., et al. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today. 6, 446-465 (2011).
  5. Donaldson, K., Poland, C. A. Nanotoxicity: challenging the myth of nano-specific toxicity. Curr. Opin. Biotechnol. 24, 724-734 (2013).
  6. Veiseh, O., et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643-651 (2015).
  7. Jones, S. W., et al. Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. J. Clin. Invest. 123, 3061-3073 (2013).
  8. Marchi, L. F., Sesti-Costa, R., Chedraoui-Silva, S., Mantovani, B. Comparison of four methods for the isolation of murine blood neutrophils with respect to the release of reactive oxygen and nitrogen species and the expression of immunological receptors. Comp. Clin. Pathol. 23, 1469-1476 (2014).
  9. Morton, K. J., et al. Hydrodynamic metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials. Proc. Natl. Acad. of Sci USA. 105, 7434-7438 (2008).
  10. Hu, X., et al. Marker-specific sorting of rare cells using dielectrophoresis. Proc. Natl. Acad. of Sci USA. 102, 15757-15761 (2005).
  11. Cummings, E. B. Streaming dielectrophoresis for continuous-flow microfluidic devices. IEEE Eng. Med. Biol. Mag. 22, 75-84 (2003).
  12. Augustsson, P., Persson, J., Ekstrom, S., Ohlin, M., Laurell, T. Decomplexing biofluids using microchip based acoustophoresis. Lab Chip. 9, 810-818 (2009).
  13. Di Carlo, D., Irimia, D., Tompkins, R. G., Toner, M. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. of Sci USA. 104, 18892-18897 (2007).
  14. Hur, S. C., Henderson-MacLennan, N. K., McCabe, E. R. B., Di Carlo, D. Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip. 11, 912-920 (2011).
  15. Mach, A. J., Di Carlo, D. Continuous scalable blood filtration device using inertial microfluidics. Biotechnol. Bioengin. 107, 302-311 (2010).
  16. Gossett, D. R., et al. Inertial manipulation and transfer of microparticles across laminar fluid streams. Small. 8, 2757-2764 (2012).
  17. Amini, H., et al. Engineering fluid flow using sequenced microstructures. Nat. Commun. 4, 1826 (2013).
  18. Sollier, E., et al. Inertial microfluidic programming of microparticle-laden flows for solution transfer around cells and particles. Microfluid. Nanofluid. 19, 53-65 (2015).
  19. Lee, W. C., et al. Multivariate biophysical markers predictive of mesenchymal stromal cell multipotency. Proc. Natl. Acad. of Sci USA. 111, E4409-E4418 (2014).
  20. Hou, H. W., et al. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 3, 1259 (2013).
  21. Hou, H. W., Bhattacharyya, R. P., Hung, D. T., Han, J. Direct detection and drug-resistance profiling of bacteremias using inertial microfluidics. Lab Chip. 15, 2297-2307 (2015).
  22. Yeo, D. C., et al. Interference-free Micro/nanoparticle Cell Engineering by Use of High-Throughput Microfluidic Separation. ACS Appl. Mater. Inter. 7, 20855-20864 (2015).
  23. Xia, Y., Whitesides, G. M. Soft Lithography. Angew. Chem. Int. Edit. 37, 550-575 (1998).
  24. Lee, W. C., et al. High-throughput cell cycle synchronization using inertial forces in spiral microchannels. Lab Chip. 11, 1359-1367 (2011).
  25. Kuntaegowdanahalli, S. S., Bhagat, A. A., Kumar, G., Papautsky, I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip. 9, 2973-2980 (2009).

Play Video

Citar este artigo
Tay, H. M., Yeo, D. C., Wiraja, C., Xu, C., Hou, H. W. Microfluidic Buffer Exchange for Interference-free Micro/Nanoparticle Cell Engineering. J. Vis. Exp. (113), e54327, doi:10.3791/54327 (2016).

View Video