Summary

新生儿心脏支架:再生研究新矩阵

Published: November 05, 2016
doi:

Summary

在这些研究中,我们提供了新颖,新生儿,鼠心脏的再生研究使用支架的方法。

Abstract

The only definitive therapy for end stage heart failure is orthotopic heart transplantation. Each year, it is estimated that more than 100,000 donor hearts are needed for cardiac transplantation procedures in the United States1-2. Due to the limited numbers of donors, only approximately 2,400 transplants are performed each year in the U.S.2. Numerous approaches, from cell therapy studies to implantation of mechanical assist devices, have been undertaken, either alone or in combination, in an attempt to coax the heart to repair itself or to rest the failing heart3. In spite of these efforts, ventricular assist devices are still largely used for the purpose of bridging to transplantation and the utility of cell therapies, while they hold some curative promise, is still limited to clinical trials. Additionally, direct xenotransplantation has been attempted but success has been limited due to immune rejection. Clearly, another strategy is required to produce additional organs for transplantation and, ideally, these organs would be autologous so as to avoid the complications associated with rejection and lifetime immunosuppression. Decellularization is a process of removing resident cells from tissues to expose the native extracellular matrix (ECM) or scaffold. Perfusion decellularization offers complete preservation of the three dimensional structure of the tissue, while leaving the bulk of the mechanical properties of the tissue intact4. These scaffolds can be utilized for repopulation with healthy cells to generate research models and, possibly, much needed organs for transplantation. We have exposed the scaffolds from neonatal mice (P3), known to retain remarkable cardiac regenerative capabilities,5-8 to detergent mediated decellularization and we repopulated these scaffolds with murine cardiac cells. These studies support the feasibility of engineering a neonatal heart construct. They further allow for the investigation as to whether the ECM of early postnatal hearts may harbor cues that will result in improved recellularization strategies.

Introduction

心脏衰竭是常见的,致命的。这是一种渐进性疾病,导致心脏,它损害的血液流向内脏和叶身未满足的代谢需求的收缩力下降。据估计,570万美国人患有心脏衰竭和它是住院在美国9的首要原因。在美国治疗的患者心脏衰竭的集体费用超过$ 300十亿美元,每年9-10。对于终末期心脏衰竭,唯一确定的疗法是心脏移植。每年,估计需要在美国1-2心脏移植程序超过10万个捐助者的心。由于捐助者的数量有限,只有约2,400个移植每年在美国2执行。显然,这个器官短缺需要其他的策略时需出示了transplanta额外的器官加以解决化,理想的是这些器官是自体的,以避免与排斥和寿命免疫抑制有关的并发症。

哺乳动物的成年心肌细胞表现出在损伤有限再生能力,但最近的证据表明哺乳动物新生儿心脏维持损伤后5-8显着的再生能力。具体地讲,下面的部分的手术切除,再生窗口已被生产后天之间发现7.该再生周期的特征是缺乏纤维化瘢痕,形成新血管形成的,从心外膜血管生成因子的释放,和心肌细胞增殖5-8 ,11。这个再生的时间窗口提供了使用新生儿心脏作为材料的生物人工心脏的发展了一种新的源的电位。

细胞外基质是已知的以提供重要的线索以促进cardiomyocytË增殖和生长。在新生儿和成人的矩阵12和促进再生能力的分子的可用性明显的差异已探索13。脱细胞成人基质已在几个研究中用于提供蜂窝复育的ECM支架和生物人工心脏的产生。虽然这些研究,并在干细胞技术的新的发现,正在迅速推进,几个障碍尚未得到满足。例如,在维护基质的天然结构,蜂窝融入矩阵壁的限制,并能够支持增殖和生长都限制了这种方法的成功。而优异的再生属性已被归因于新生儿心脏,使用这样的组织的实际方面限制了它的探索。

根据新生儿心脏的证明再生能力,我们通过开发一个新的发展矩阵脱细胞为P3小鼠心脏的技术。之所以选择这些研究的P3心脏,因为它是心肌再生的窗口内,先前确定的6,但心脏够大丰收,decellularize和recellularize。这项研究的目的是证明创建从新生小鼠心脏的矩阵的可行性。我们的研究为脱细胞一分钟,新生儿心脏同时维持ECM的结构和蛋白质的完整性的可行性提供了证据。我们也展示给recellularize与mCherry表达心肌这种心脏ECM的能力,我们已经研究这些心肌细胞为以下recellularization各种心脏标志物的表达。该技术将允许用于生物人工心脏的发展新生儿矩阵的优越性的测试。

Protocol

所有小鼠实验按照美国动物福利法进行,明尼苏达大学的机构动物护理和使用委员会批准。 1.小鼠心脏提取方法安乐死断头一个新生小鼠用单次使用的刀片。 擦拭用70%乙醇的胸部。 通过削减它远离胸壁与标准的剪刀,而与一对#5镊子横向拉扯皮肤解剖从胸部皮肤。 穿孔腹部只是不如与由通过腹壁切割剪刀胸骨。抓剑突与#5镊子,从主体吻侧缩回胸骨切割时虽…

Representative Results

脱细胞 平均而言,时间使用这个协议的P3心脏的脱细胞大约为14小时。给出的平均心脏重量的23毫克为P3新生儿。 Acellularity 图3a说明了一个完全完好P3新生儿心脏(整装)。 图3b示出以下脱细胞相同的心脏; 图4a和4b分别显示了完整和脱细胞的心脏的苏木精和曙红染色?…

Discussion

这种技术对心脏的重复灌注的依赖使得栓塞的回避取得成果的一个重要组成部分。从心脏在步骤2.2-2.6初始导尿,到步骤2.8-2.14之间溶液的变化,有操作,可以允许引入气泡而妥协灌注液流入心肌的。由于新生儿心脏的面积小,在血管甚至微小气泡可引起心肌梗死的技术,从而使脱细胞不完整的。另外,在以后的洗涤步骤中,不完整的灌注可导致洗涤剂残留有负面影响的生物相容性。此外,如在步?…

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors gratefully acknowledge Ms. Cynthia DeKay for the preparation of the figures.

Materials

1. Materials For Mouse Heart Isolation
P1 mouse pups (as shown; B6;D2-Tg(Myh6*-mCherry)2Mik/J) Jackson Laboratories 21577 or equivalent
60 mm Culture dish BD Falcon 353004 or equivalent
Phosphate buffered saline pH 7.4 (sterile) Hyclone SH30256.01 or equivalent
Single Use Blade Stanley 28-510 or equivalent
Standard Scissors Moria Bonn (Fine Science Tools) 14381-43 or equivalent
Spring Scissors 10 cm Fine Science Tools 15024-10 or equivalent
Vannas Spring Scissors – 3mm Cutting Edge Fine Science Tools 15000-00 or equivalent
#5 Forceps Dumnot (Fine Science Tools) 11295-00 or equivalent
2. Materials For Decellularization
Inlet adaptor Chemglass CG-1013 autoclavable
Septum Chemglass CG-3022-99 autoclavable
1/8 in. ID x 3/8 OD C-Flex tubing Cole-Parmer  EW-06422-10 autoclavable
Male luer to 1/8" hose barb adaptor McMaster-Carr 51525K33 autoclavable
Female luer to 1/8" hose barb adaptor McMaster-Carr 51525K26 autoclavable
Prolene 7-0 surgical suture  Ethicon 8648G or equivalent
Ring stand Fisher Scientific S47807 or equivalent
Clamp Fisher Scientific 05-769-6Q or equivalent
Clamp regular holder Fisher Scientific 05-754Q or equivalent
60 cc syringe barrel  Coviden 1186000777T or equivalent
Beaker Kimble 14000250 or equivalent
22g x 1 Syringe Needle  BD 305155 or equivalent
12 cc syringe  Coviden 8881512878 or equivalent
3-way stop cock   Smith Medical  MX5311L or equivalent
22 x 1 g needle  BD 305155 or equivalent
PE50 tubing  BD Clay Adams Intramedic 427411 Must be formable by heat. Polyethylene recommended
1% SDS  Invitrogen 15525-017 Ultrapure grade recommended. Make up fresh solution and filter sterilize before use. 
1% Triton X-100  Sigma-Aldrich T8787 Make up fresh solution from a 10% stock and filter sterilize before use. 
Sterile dH2O Hyclone SH30538.02 Or MilliQ system purified water.
1X Pen/Strep  Corning CellGro 30-001-Cl or equivalent
3. Materials For DNA Quantitation
Proteinase K  Fisher BP1700 >30U/mg activity
KCl Sigma-Aldrich P9333 or equivalent
MgCl*6H2O Mallinckrodt 5958-04 or equivalent
Tween 20  Sigma-Aldrich P1379 or equivalent
Tris base/hydrochloride Sigma-Aldrich T1503/T5941 or equivalent
Pico-Green dsDNA assay kit Life Technologies  P7589 requires fluorimeter to read
4. Method for fixation and sectioning of tissue. 
Paraformaldehyde Sigma-Aldrich P6148 or equivalent
Gelatin Type A from porcine skin Sigma-Aldrich G2500 must be 300 bloom or greater
5. Method for tissue histology
Cryomolds 10 x 10 x 5mm Tissue-Tek 4565 or equivalent
Cryostat Hacker/Bright Model OTF or equivalent
Microscope Slides  25 x 75 x 1 mm Fisher Scientific 12-550-19 or equivalent
Hematoxylin 560  Surgipath/Leica Selectech  3801570 or equivalent
Ethanol Decon Laboratories 2701 or equivalent
Define Surgipath/Leica Selectech  3803590 or equivalent
Blue buffer  Surgipath/Leica Selectech  3802915 or equivalent
Alcoholic Eosin Y 515  Surgipath/Leica Selectech  3801615 or equivalent
Formula 83 Xylene substitute  CBG Biotech  CH0104B or equivalent
Permount Mounting Medium  Fisher Chemical  SP15-500 or equivalent
Collagen IV Antibody Rockland 600-401-106.1 or equivalent
α-Actinin Antibody Abcam AB9465 or equivalent
mCherry Antibody Abcam AB205402 or equivalent
NKX2.5 Antibody Santa Cruz Biotechnology SC-8697 or equivalent
Donkey anti-mouse AF488 Antibody Life Technology  A21202  or equivalent
Donkey anti-chicken AF594 Antibody Jackson Immunoresearch  703-585-155  or equivalent
Donkey anti-goat CY5 Antibody Jackson Immunoresearch  705-175-147 or equivalent
Fab Fragment Goat Anti-Rabbit IgG (H+L) AF594 Jackson Immunoresearch  111-587-003  or equivalent
Prolong Gold Antifade Mountant with DAPI ThermoFisher P36930 or equivalent
6. Isolation of neonatal ventricular cardiomyocytes using pre-plating.
HBSS (Ca, Mg Free) Hyclone SH30031.02 or equivalent
HEPES (1M) Corning CellGro 25-060-Cl or equivalent
Cell Strainer BD Falcon 352340 or equivalent
50 mL tube BD Falcon 352070 or equivalent
Primeria 100 mm plates Corning 353803 Primeria surface enhances fibroblast attachment promoting a higher myocyte purity
Trypsin Difco 215240 or equivalent
DNase II Sigma-Aldrich D8764 or equivalent
DMEM (Delbecco's Minimal Essential Media) Hyclone SH30022.01 or equivalent
Vitamin B12  Sigma-Aldrich V6629 or equivalent
Fibronectin coated plates  BD Bioscience 354501 or equivalent
Fetal bovine serum  Hyclone SH30910.03 or equivalent
Heart bioreactor glassware Radnoti Glass Technology 120101BEZ Must be sterilizable by autoclaving or gas.

Referências

  1. Yusen, R. D., et al. Registry of the International Society for Heart and Lung Transplantation: Thirty-second official adult lung and heart-lung transplantation report–2015. J Heart Lung Transplant. 34 (10), 1264-1277 (2015).
  2. Go, A. S., et al. Heart disease and stroke statistics–2014 update: A report from the american heart association. Circulation. 129 (3), e28-e292 (2014).
  3. Kapelios, C. J., Nanas, J. N., Malliaras, K. Allogeneic cardiosphere-derived cells for myocardial regeneration: current progress and recent results. Future Cardiol. 12 (1), 87-100 (2016).
  4. Ott, H. C., et al. Perfusion decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat Med. 14 (2), 213-221 (2008).
  5. Porrello, E. R., Olson, E. O. A neonatal blueprint for cardiac regeneration. Stem Cell Research. 13 (3 Pt B), 556-570 (2014).
  6. Porrello, E. R., et al. Transient regenerative potential of the neonatal mouse heart. Science. 331 (6020), 1078-1080 (2011).
  7. Polizzotti, B. D., et al. Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window. Sci Transl Med. 7 (281), 281ra45 (2015).
  8. Jesty, S. A., et al. c-kit+ precursors support postinfarction myogenesis in the neonatal, but not adult, heart. Proc Natl Acad Sci U S A. 109 (33), 13380-13385 (2012).
  9. Ambrosy, A. P., et al. The Global Health and Economic Burden of Hospitalizations for Heart Failure: Lessons Learned From Hospitalized Heart Failure Registries. J Am Coll Cardiol. 63 (12), 1123-1133 (2014).
  10. Roger, V. L., et al. Executive Summary: Heart Disease and Stroke Statistics-2012 Update A Report From the American Heart Association. Circulation. 125 (22), 188-197 (2012).
  11. Kennedy-Lydon, T., Rosenthal, N. Cardiac regeneration: epicardial mediated repair. Proc R Soc B. 282 (1821), 2147-2172 (2015).
  12. Williams, C., Sullivan, K., Black, L. D. Partially Digested Adult Cardiac Extracellular Matrix Promotes Cardiomyocyte Proliferation In Vitro. Adv Healthcare Mat. 4 (10), 1545-1554 (2015).
  13. Borg, T. K., et al. Recognition of extracellular matrix components by neonatal and adult cardiac myocytes. Dev Biol. 104 (1), 86-96 (1984).
  14. Strober, W. Trypan blue exclusion test of cell viability. Curr Protoc Immnol. 111, A3-B1-3 (2015).
  15. Gilbert, T. W., Freund, J. M., Badylak, S. F. Quantification of DNA in biologic scaffold materials. J Surg Res. 152 (1), 135-139 (2009).
  16. Akhyari, P., et al. The quest for an optimized protocol for whole-heart decellularization: a comparison of three popular and a novel decellularization technique and their diverse effects on crucial extracellular matrix qualities. Tissue Eng Part C Methods. 17 (9), 915-926 (2011).
  17. Lu, T. Y., et al. Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun. 4 (2307), 1-11 (2013).
check_url/pt/54459?article_type=t

Play Video

Citar este artigo
Garry, M. G., Kren, S. M., Garry, D. J. Neonatal Cardiac Scaffolds: Novel Matrices for Regenerative Studies. J. Vis. Exp. (117), e54459, doi:10.3791/54459 (2016).

View Video