Summary

定义底物特异性的脂肪酶和磷脂酶考生

Published: November 23, 2016
doi:

Summary

Many predicted (phospho)lipases are poorly characterized with regard to their substrate specificities and physiological functions. Here we provide a protocol to optimize enzyme activities, search for natural substrates, and propose physiological functions for these enzymes.

Abstract

微生物产生的那些,以使可用于生物体外部基板分泌(磷)的脂酶广泛光谱。另外,其他(磷酸)脂肪酶可以在物理上与生产菌引起的内在脂质的营业额,并经常引起细胞膜的重塑有关。虽然势(磷)的脂肪酶可以用数目的算法时该基因/蛋白质序列可用来预测,经常没有获得的酶的活性,底物特异性,和潜在的生理功能的实验证据。这个手稿描述的测定条件与未知底物特异性,以及如何利用这些优化条件下在搜索用于相应(磷)的脂肪酶的天然底物准(磷)的脂肪酶的最优化。采用人工发色底物,如硝基苯衍生物,可有助于检测小为在标准条件下的预测(磷)的脂肪酶的酶活性。具有遇到这样的次要的酶活性,酶测定法的不同参数可以在为了获得人造基底的更有效的水解而变化。已确定在其下的酶工作良好的条件之后,各种潜在天然底物应测定其降解,其可以采用不同的层析方法进行随后的处理。底物特异性为新酶的定义,通常提供假设这些酶,然后可通过实验测试的潜在生理作用。遵循这些指导原则,我们能够确定降解磷脂酰胆碱磷酸胆碱到甘油二酯和,在膜中生长时的磷限制条件细菌根瘤菌重塑的关键一步磷脂酶C(SMc00171)。两个预测patatin-就像有机体一样的磷脂酶(SMc00930和SMc01003),我们可以重新确定自己的底物特异性和澄清SMc01003是甘油二酯脂肪酶。

Introduction

基于甘油脂质,如三酰甘油和(甘油)磷脂构成了重要的可能是最知名的类脂质1。三酰基甘油(变量)的脂肪或油,其通常用作存储脂类,因此作为潜在的能量和碳的来源。标签可以通过脂肪酶,这是经常被生产菌分泌的消化外部变量并使它们可作为碳源退化。另外,脂肪酶已经被广泛地研究,多年来,由于其重要的生物技术应用2。

由于它们的两亲性质及其近圆筒状的形状,(甘油)磷脂展览成膜性,通常构成了双层膜3的主要类脂组分。在简单的微生物,如细菌大肠杆菌中,只有三个主要头组的变体,磷脂酰甘油(PG),心磷脂(CL),和phosphatidylethanolamine(PE)遇到,尽管人们应该知道,他们中的每一个都可以用在sn相当数量的不同脂肪酰基链的-1或SN -2位置引起大量不同分子种类4的被取代。其他细菌可能具有除了或代替其他磷脂。例如, 苜蓿中华根瘤菌 ,土壤细菌,其能够形成与豆科苜蓿( 紫花苜蓿 )一个固氮根瘤共生,包含除了PE的第二两性离子磷脂,磷脂酰胆碱(PC),5。另外,不含有脂质磷或甘油可能是细胞膜的两亲性并形成部分。例如,在磷限制生长条件下,在S根瘤菌 ,(甘油)磷脂主要由膜脂质不包含磷, 即,硫脂,鸟氨酸脂质和diacylglyceryl trimethylho取代moserine(DGTS)6。在细菌中,DGTS从二酰甘油(DAG)在一个两步通路7形成,但是对于DAG生成源不明确。脉冲追踪实验表明个人电脑可能是DGTS 8的前体,并使用在这个手稿,我们可以识别磷脂酶C(PLCP,SMc00171)中描述的方法,该方法是磷限制性的条件下形成并且可PC转换为DAG和磷酸8。

在另一项研究中,我们发现,酰基-CoA合成酶(FADD)S的缺陷型突变体进入生长9的固定相时的根瘤菌大肠杆菌积累游离脂肪酸。尽管这些脂肪酸似乎是从膜脂质衍生自游离脂肪酸或解放出来的酶的确切来源没有已知的。再次,采用的策略在这个手稿概述,二patatin启动类10(磷)的脂肪酶(SMc00930和SMc01003),该对S中形成的游离脂肪酸贡献根瘤菌 11进行了预测。令人惊讶地,SMc01003使用的DAG作为底物将其转换为单酰甘油和最后甘油和游离脂肪酸11。因此,SMc01003是DAG脂肪酶(DGLA)。

虽然用于预测潜在(磷)存在一些算法脂酶12,13,它们的精确的功能和生理作用通常是不知道的。在这里,我们勾勒出一个协议,克隆和过度预测的或潜在的(磷)的脂肪酶。这份手稿解释酶检测如何开发和利用人工色底物的过度表达(磷)脂肪酶进行了优化。我们提供的例子,这些研究结果可能如何与优化的酶测定可遇到的实际(磷酸),酶底物,以及如何丰富我们的微生物生理学的理解。

Protocol

1.克隆和过度表达结构基因的脂肪酶预测使用聚合酶链反应(PCR)14和特异性寡核苷酸( 表1)15,扩增感兴趣(smc01003,smc00930或smc00171)的基因,预测为脂肪酶编码或磷脂酶,从宿主生物的基因组DNA( 即, 苜蓿根瘤菌 )。 引入特定的限制性位点(有寡核苷酸的设计的序列)。消化与相应的限制性内切酶的扩增的DNA片段…

Representative Results

PC专用磷脂酶C SMc00171的活性的双- 对 硝基苯磷酸酯 从大肠杆菌获得的无细胞提取物大肠杆菌 BL21(DE3)×pLysS中,其中有smc00171表达,进行了研究它们对水解二- 对硝基苯基磷酸酯的能力,使用分光光度酶促测定法中,测量形成p -NP。没有水解活性是?…

Discussion

在过去的20年中,许多生物基因组研究已经被测序,虽然丰富的基因组序列数据已经产生,功能解释相对滞后,因此阻碍了我们的基因组功能的认识。在基因组中的基因功能的基础上相似已知功能或保守的基序的发生基因经常被分配。然而,给定基因的精确功能往往不是公知的。尤其,预计酶的结构基因不能由组学技术容易地探索由于这样的事实,大部分酶催化涉及两个基板和两个产品的复杂的?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作是由(在InvestigaciónCientíficaBASICA在Investigación连接国界德拉西恩西亚82614,153998,253549和178359以及118),并从提高妇女地位总署德从理事会全国国立科学城ŸTECNOLOGIA – 墨西哥(国家科学技术委员会和墨西哥)资助项目Asuntos去个人Académico-国立自治大学墨西哥(DGAPA,墨西哥国立自治大学; PAPIIT IN202616,IN203612)。

Materials

Chloroform JT Baker 9180-03 TLC analysis & Lipid extraction
Methanol JT Baker 9070-03 TLC analysis & Lipid extraction
Acetic Acid JT Baker 9507-05 TLC analysis & Lipid extraction
Hexanes JT Baker 9309-02 TLC analysis & Lipid extraction
Diethylether Sigma 32203 Enzymatic assays
bidistilled water  ANY  NA Enzymatic assays
Tris Base Sigma T-1503 Enzymatic assays
HCl Baker 9535-02 Enzymatic assays
NaCl Baker 3624-01 Enzymatic assays
Triton X-100 Sigma X-100 Enzymatic assays
LB broth ANY NA Bacterial growth, 10g tryptone + 5g yeast extract + 10g NaCl per liter of bidistilled water
tryptone Becton Dickinson and Company 211705 Bacterial growth
yeast extract Becton Dickinson and Company 212750 Bacterial growth
TY broth ANY NA Bacterial growth, 8g tryptone + 3g yeast extract + 66mg CaCl2 2 H20 per liter of bidistilled water
CaCl2 2 H2O Baker 1332-01 Enzymatic assays
isopropyl-β-D-thiogalactoside (IPTG) Invitrogen 15529-019 Bacterial growth
Diethanolamine Sigma D-8885 Enzymatic assays
MnCl2 Sigma 221279 Enzymatic assays
Phospholipase A2 snake venom Sigma P0790 Enzymatic assays
Phospholipase C Clostridium perfingrens Sigma P7633 Enzymatic assays
Bis-p-nitrophenyl phosphate Sigma 07422AH Enzymatic assays
p-nitrophenyl stearate Sigma N3627 Enzymatic assays
p-nitrophenyl dodecanoate Sigma 61716 Enzymatic assays
p-nitrophenyl decanoate Sigma N0252 Enzymatic assays
p-nitrophenyl palmitate Sigma N2752 Enzymatic assays
p-nitrophenyl butyrate Sigma N9876 Enzymatic assays
p-nitrophenyl octanoate Sigma 21742 Enzymatic assays
Acetic Acid, sodium salt [1-14C] Perkin Elmer NEC084 Bacterial growth
dimethylsulfoxide (DMSO) JT Baker 9224-01 Enzymatic assays
Aluminium HPTLC silica gel 60 plates. Silica gel HPTLC plates size 20 x 20 cm, 25 sheets. Merck 105547 TLC analysis & Lipid extraction
Spectrometer UV/VIS Lambda 35 Perkin Elmer NA Enzymatic assays
Storm 820 Phosphorimager Molecular Dynamics NA Photostimulable Luminescence scanner 
Multipurpose Scintillation Counter Beckman Coulter NA Radioactivity Quantification
French Pressure Cell ThermoSpectronic NA  Breakage of cells
chromatography paper 3MM Chr Whatman 3030917 TLC analysis
Sinorhizobium meliloti 1021our reference 34 studied strain
Escherichia coli BL21 (DE3) pLysS Competent cells Novagen 69451 protein expression strain
pET9a vector Novagen 69431 protein expression vector
pET17b vector Novagen 69663 protein expression vector
sterile polystyrene round-bottom tube (14 ml) Falcon Becton Dickinson 352057 radiolabeling of bacterial cultures
polypropylene microcentrifuge tubes (1.5 ml) Eppendorf 30125.15 Enzymatic assays
1,2-dipalmitoyl-sn-glycerol Sigma D9135 lipid standard
L-α-phosphatidylcholine, dipalmitoyl Sigma P6267 lipid standard
DL-α-monopalmitin Sigma M1640 lipid standard
palmitic acid Sigma P0500 lipid standard

Referências

  1. Nelson, D. L., Cox, M. M. . Lehninger, Principles of Biochemistry. , (2013).
  2. Jaeger, K. E., Eggert, T. Lipases for biotechnology. Curr. Opin. Biotechnol. 13 (4), 390-397 (2002).
  3. Dowhan, W., Bogdanov, M., Mileykovskaya, E. Functional roles of lipids in membranes. Biochemistry of Lipids, Lipoproteins and Membranes. , 1-37 (2008).
  4. Dowhan, W. Molecular basis for membrane phospholipid diversity: why are there so many lipids?. Annu. Rev. Biochem. 66, 199-232 (1997).
  5. De Rudder, K. E. E., Thomas-Oates, J. E., Geiger, O. Rhizobium meliloti mutants deficient in phospholipid N-methyltransferase still contain phosphatidylcholine. J. Bacteriol. 179, 6921-6928 (1997).
  6. Geiger, O., Röhrs, V., Weissenmayer, B., Finan, T. M., Thomas-Oates, J. E. The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti. Mol. Microbiol. 32 (1), 63-73 (1999).
  7. Klug, R. M., Benning, C. Two enzymes of diacylglyceryl-O-4′-(N,N,N,-trimethyl)homoserine biosynthesis are encoded by btaA and btaB in the purple bacterium Rhodobacter sphaeroides. Proc. Natl. Acad. Sci. USA. 98 (10), 5910-5915 (2001).
  8. Zavaleta-Pastor, M., et al. Sinorhizobium meliloti phospholipase C required for lipid remodeling duringphosphorus limitation. Proc. Natl. Acad. Sci. USA. 107 (1), 302-307 (2010).
  9. Pech-Canul, A., et al. FadD is required for utilization of endogenous fatty acids released from membrane lipids. J. Bacteriol. 193 (22), 6295-6304 (2011).
  10. Banerji, S., Flieger, A. Patatin-like proteins: a new family of lipolytic enzymes present in bacteria?. Microbiology. 150 (Pt 3), 522-525 (2004).
  11. Sahonero-Canavesi, D. X., et al. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase. Environ. Microbiol. 17 (9), 3391-3406 (2015).
  12. Fischer, M., Pleiss, J. The Lipase Engineering Database: a navigation and analysis tool for protein families. Nucl. Acid. Res. 31 (1), 319-321 (2003).
  13. Sigrist, C. J. A., et al. New and continuing developments at PROSITE. Nucleic Acids Res. 41 (Database issue), D344-D347 (2013).
  14. Lorenz, T. C. Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies. J. Vis. Exp. (63), e3998 (2012).
  15. Untergasser, A., et al. Primer3 – new capabilities and interfaces. Nucl. Acids Res. 40 (15), e115 (2012).
  16. Studier, F. W., Rosenberg, A. H., Dunn, J. J., Dubendorff, J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60-89 (1990).
  17. Miller, J. H. . Experiments in Molecular Genetics. , (1972).
  18. Desjardins, P., Hansen, J. B., Allen, M. Microvolume Protein Concentration Determination using the NanoDrop 2000c Spectrophotometer. J. Vis. Exp. (33), e1610 (2009).
  19. Bligh, E. G., Dyer, W. J. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37 (8), 911-917 (1959).
  20. Molecular Dynamics. . Phosphorimager SI User´s Guide. , (1994).
  21. Dixon, M., Webb, E. . Enzymes: Third Edition. , (1979).
  22. Rudolph, A. E., et al. Expression, characterization, and mutagenesis of the Yersinia pestis murine toxin, a phospholipase D superfamily member. J. Biol. Chem. 274 (17), 11824-11831 (1999).
  23. Kato, S., Yoshimura, T., Hemmi, H., Moriyama, R. Biochemical analysis of a novel lipolytic enzyme YvdO from Bacillus subtilis. Biosci. Biotechnol. Biochem. 74 (4), 701-706 (2010).
  24. Peppelenbosch, M. P. Kinome profiling. Scientifica (Cairo). , (2012).
  25. Manafi, M., Kneifel, W., Bascomb, S. Fluorogenic and chromogenic substrates used in bacterial diagnostics. Microbiol. Rev. 55 (3), 335-348 (1991).
  26. Kuznetsova, E., et al. Enzyme genomics: Application of general enzymatic screens to discover new enzymes. FEMS Microbiol. Rev. 29 (2), 263-279 (2005).
  27. Scopes, R. K. . Protein Purification, Principles and Practice. , (2010).
  28. Geiger, O., Lopez-Lara, I. M., Sohlenkamp, C. Phosphatidylcholine biosynthesis and function in bacteria. Biochim. Biophys. Acta. 1831 (3), 503-513 (2013).

Play Video

Citar este artigo
Sahonero-Canavesi, D. X., Zavaleta-Pastor, M., Martínez-Aguilar, L., López-Lara, I. M., Geiger, O. Defining Substrate Specificities for Lipase and Phospholipase Candidates. J. Vis. Exp. (117), e54613, doi:10.3791/54613 (2016).

View Video