Summary

间接神经元的星形胶质细胞共培养试验:一个<em>体外</em>设置 - 为神经元的神经胶质细胞相互作用的详细调查

Published: November 14, 2016
doi:

Summary

该协议描述了神经元的神经胶质细胞相互作用的条块分析间接神经元的星形胶质细胞共培养。

Abstract

正确的神经细胞的发育和功能是发展中国家和成人大脑的先决条件。然而,复杂的神经元网络的高度控制形成和维护背后的机制尚未完全迄今理解。关于健康和疾病的神经元的开放式问题是多种多样的,从理解基本的发展,人类的调查相关疾病, 阿尔茨海默氏症和精神分裂症深远。可以在体外进行的神经元的最详细的分析。然而,神经元细胞,要求和需要为他们的长期生存的额外支持星形胶质细胞。此细胞异质性是在与目标解剖神经元和星形胶质细胞的分析冲突。我们在这里提出一个细胞培养测定法,其允许纯原代神经元和星形胶质细胞,其共享相同的化学上确定的培养基的长期共培养,而在物理上分开。在此设置中,培养物存活多达四个星期,该测定是适于关于神经元的神经胶质细胞的相互作用研究的多样性。

Introduction

纵观几十年来,神经胶质细胞功能的一般性解释已经从一个单纯的支持对有关神经功能1积极调节作用的归属演变。因为对健康和疾病的2脑稳态其突出的影响,星形胶质细胞是科学界特别感兴趣的。在过去的几年中,研究一个多样性集中于神经胶质细胞的相互作用体内体外 3。然而,大多数的培养系统的不允许这两种细胞类型的单独分析和各自secretomes的。

有几种方法利用神经元和神经胶质细胞的直接共培养,实现长期持久的生存与生理有关的神经网络的发展4-6。本协议达到同样的目标,同时保持物理上分离的7两种细胞类型。相比conditioneD培养基接近8,9,我们的系统可以让研究神经细胞和星形胶质细胞之间的双向通信。分泌的信号分子的表达可以在细胞中的共享介质maturate进行监测。这个机会是特别相关的,因为星形细胞释放可溶性因子,如细胞因子,生长因子和细胞外基质分子10,11,从而调节神经元生长和功能7,12。因此,已经证明,另外在体外血小板反应蛋白视网膜神经节细胞的诱导突触13的形成。然而,其他未知因素是必要的,以使突触功能13。此外,通过星形胶质细胞释放分子具有以了解神经胶质细胞的相互作用的基础上被识别。

从小鼠和大鼠原代神经元和星形胶质细胞的培养先前已14-16所述。在这里,我们提出了一种优雅和多功能的工具,这两种细胞类型中的一种间接共培养方法结合起来。由于两个培养物物理分离但共享相同的介质,神经元,星形细胞和可溶性分子的影响,可以分别进行分析,从而为神经胶质细胞的相互作用的研究的强有力的工具。

Protocol

小鼠实验是按照德国法律和德国社会为畜牧业的神经科学的指导方针。在波鸿鲁尔大学的动物保护与利用委员会授予相应的许可证。 1.准备和皮层星形胶质细胞的培养注:进行下一个步骤,有准备的神经元前的星形胶质细胞的文化应该发展成融合单层之前完成这些步骤,该协议至少7天的。原发性星形胶质细胞从各地日龄(P),0-3的乳鼠获得的混合胶质细?…

Representative Results

通过间接共培养系统中的神经元培养物的分析是多方面的,可以在培养的成熟的不同阶段进行。由于这样的事实,该细胞可被保持长达4周,培养物的长期的调查是可能的。 在图1中的中间左侧面板概略说明了共培养设置。与使用该系统,可以执行这两种细胞类型的活细胞成像,由星形胶质细胞单层(左上面板)和?…

Discussion

当前协议的主要目的是完全独立的神经元和星形细胞培养物,同时保持它们在共享介质。由于这个原因,所得到的培养物的纯度应在过程的开始进行验证。我们推荐使用神经元特异性微管蛋白,神经丝或蛋白质的NeuN神经元的标记,GFAP作为星形细胞标记,O4抗原少突胶质细胞前体标记,并Iba1蛋白识别小胶质细胞。

执行该协议的一个关键步骤的时候要特别注意,如由步骤说明之…

Declarações

The authors have nothing to disclose.

Acknowledgements

The present work was supported by the German research foundation (Deutsche Forschungsgemeinschaft DFG: GRK 736, Fa 159/22-1; the research school of the Ruhr University Bochum (GSC98/1) and the priority program SSP 1172 “Glia and Synapse”, Fa 159/11-1,2,3).

Materials

Reagents
B27 Gibco (Life Technologies) 17504-044
Cell culture grade water MilliQ
Cell culture grade water MilliQ
Cytosine-ß-D arabinofuranoside (AraC) Sigma-Aldrich C1768 CAUTION: H317, H361
DMEM Gibco (Life Technologies)  41966-029
DNAse Worthington LS002007
Gentamycin Sigma-Aldrich G1397 CAUTION: H317-334
Glucose Serva 22700
HBSS Gibco (Life Technologies) 14170-088
HEPES Gibco (Life Technologies) 15630-056
Horse serum Biochrom AG S9135
L-Cysteine Sigma-Aldrich C-2529
MEM Gibco (Life Technologies) 31095-029
Ovalbumin Sigma-Aldrich A7641 CAUTION: H334
Papain Worthington 3126
PBS self-made 
Poly-D-lysine Sigma-Aldrich P0899
Poly-L-ornithine Sigma-Aldrich P3655
Sodium pyruvate Sigma-Aldrich S8636
Trypsin-EDTA Gibco (Life Technologies) 25300054
Equipment
24 well plates Thermoscientific/Nunc 142475
24-wells plate (for the  indirect co-culture) BD Falcon 353504
Binocular Leica MZ6
Cell-culture inserts BD Falcon 353095
Centrifuge Heraeus Multifuge 3S-R
Counting Chamber Marienfeld 650010
Forceps FST Dumont (#5) 11254-20
glass cover slips (12 mm) Carl Roth (Menzel- Gläser) P231.1
Incubator Thermo Scientific Heracell 240i
Micro tube (2 ml) Sarstedt 72,691
Microscope Leica DMIL
Millex Syringe-driven filter unit Millipore SLGV013SL
Orbital shaker New Brunswick Scientific Innova 4000
Parafilm Bemis PM-996
Petri dishes (10 cm) Sarstedt 833,902
pipette (1 ml) Gilson Pipetman 1000
Sterile work bench The Baker Company Laminar Flow SterilGARD III
Surgical scissors FST Dumont 14094-11
Syringe Henry Schein 9003016
T75 flask Sarstedt 833,911,002
tube (15 ml) Sarstedt 64,554,502
Water bath GFL Water bath type 1004

Referências

  1. Volterra, A., Meldolesi, J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci. 6, 626-640 (2005).
  2. Barreto, G. E., Gonzalez, J., Torres, Y., Morales, L. Astrocytic-neuronal crosstalk: implications for neuroprotection from brain injury. Neurosci Res. 71, 107-113 (2011).
  3. Araque, A., Carmignoto, G., Haydon, P. G. Dynamic signaling between astrocytes and neurons. Annu Rev Physiol. 63, 795-813 (2001).
  4. Dityatev, A., et al. Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets. Dev Neurobiol. 67, 570-588 (2007).
  5. Robinette, B. L., Harrill, J. A., Mundy, W. R., Shafer, T. J. In vitro assessment of developmental neurotoxicity: use of microelectrode arrays to measure functional changes in neuronal network ontogeny. Front Neuroeng. 4, 1 (2011).
  6. Voigt, T., Opitz, T., de Lima, A. D. Synchronous Oscillatory Activity in Immature Cortical Network Is Driven by GABAergic Preplate Neurons. J Neurosci. 21 (22), 8895-8905 (2001).
  7. Geissler, M., Faissner, A. A new indirect co-culture set up of mouse hippocampal neurons and cortical astrocytes on microelectrode arrays. J Neurosci Methods. 204, 262-272 (2012).
  8. Yu, C. Y., et al. Neuronal and astroglial TGFbeta-Smad3 signaling pathways differentially regulate dendrite growth and synaptogenesis. Neuromolecular Med. 16, 457-472 (2014).
  9. Yu, P., Wang, H., Katagiri, Y., Geller, H. M. An in vitro model of reactive astrogliosis and its effect on neuronal growth. Methods Mol Biol. 814, 327-340 (2012).
  10. Kucukdereli, H., et al. Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. PNAS. 108, E440-E449 (2011).
  11. Pyka, M., Busse, C., Seidenbecher, C., Gundelfinger, E. D., Faissner, A. Astrocytes are crucial for survival and maturation of embryonic hippocampal neurons in a neuron-glia cell-insert coculture assay. Synapse. 65, 41-53 (2011).
  12. Navarrete, M., Araque, A. Basal synaptic transmission: astrocytes rule!. Cell. 146, 675-677 (2011).
  13. Christopherson, K. S., et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell. 120, 421-433 (2005).
  14. Kaech, S., Banker, G. Culturing hippocampal neurons. Nat Protoc. 1, 2406-2415 (2006).
  15. Geissler, M., et al. Primary hippocampal neurons, which lack four crucial extracellular matrix molecules, display abnormalities of synaptic structure and function and severe deficits in perineuronal net formation. J Neurosci. 33, 7742-7755 (2013).
  16. Dzyubenko, E., Gottschling, C., Faissner, A. Neuron-Glia Interactions in Neural Plasticity: Contributions of Neural Extracellular Matrix and Perineuronal Nets. Neural Plast. 2016, 5214961 (2016).
  17. McCarthy, K. D., de Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 85, 890-902 (1980).
  18. Pyka, M., et al. Chondroitin sulfate proteoglycans regulate astrocyte-dependent synaptogenesis and modulate synaptic activity in primary embryonic hippocampal neurons. Eur J Neurosci. 33, 2187-2202 (2011).
  19. Eroglu, C. The role of astrocyte-secreted matricellular proteins in central nervous system development and function. J Cell Commun Signal. 3, 167-176 (2009).
  20. Ethell, I. M., Ethell, D. W. Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets. J Neurosci Res. 85, 2813-2823 (2007).
  21. Theocharidis, U., Long, K., ffrench-Constant, C., Faissner, A., Dityatev, A. l. e. x. a. n. d. e. r., Wehrle-Haller, B. e. r. n. h. a. r. d., Asla, P. i. t. k. &. #. 2. 2. 8. ;. n. e. n. . Prog Brain Res. 214, 3-28 (2014).
  22. Dityatev, A., Rusakov, D. A. Molecular signals of plasticity at the tetrapartite synapse. Curr Opin Neurobiol. 21, 353-359 (2011).
  23. Ippolito, D. M., Eroglu, C. Quantifying synapses: an immunocytochemistry-based assay to quantify synapse. JoVe. , (2010).
check_url/pt/54757?article_type=t

Play Video

Citar este artigo
Gottschling, C., Dzyubenko, E., Geissler, M., Faissner, A. The Indirect Neuron-astrocyte Coculture Assay: An In Vitro Set-up for the Detailed Investigation of Neuron-glia Interactions. J. Vis. Exp. (117), e54757, doi:10.3791/54757 (2016).

View Video