Summary

Kvantitativ 3D<em> I Silico</em> Modeling (q3DISM) af cerebral amyloid-beta Fagocytose i gnavermodeller af Alzheimers sygdom

Published: December 26, 2016
doi:

Summary

Vi udviklede en metode til kvantitativ 3D in silico modellering (q3DISM) af cerebral amyloid-β (Ap) fagocytose af mononukleære fagocytter i gnavermodeller for Alzheimers sygdom. Denne metode kan generaliseres til kvantificering af næsten enhver fagocytisk begivenhed in vivo.

Abstract

Neuroinflammation er nu anerkendt som en vigtig ætiologisk faktor i neurodegenerativ sygdom. Mononukleære fagocytter er medfødte immunceller er ansvarlige for fagocytose og clearance af snavs og efterladenskaber. Disse celler omfatter CNS-residente makrofager kendt som mikroglia og mononukleære fagocytter infiltrerer fra periferien. Lysmikroskopi har generelt været brugt til at visualisere fagocytose i gnavere eller menneskelige hjerne prøver. Imidlertid har kvalitative metoder ikke givet endegyldige bevis for in vivo fagocytose. Her beskriver vi kvantitativ 3D i silico modellering (q3DISM), en robust metode giver mulighed for ægte 3D kvantificering af amyloid-β (Ap) fagocytose af mononukleære fagocytter i gnavere Alzheimers sygdom (AD) modeller. Fremgangsmåden involverer fluorescerende visualisering Ap indkapslet i phagolysosomes i gnaver hjernesektioner. Store z-dimensionelle konfokale datasæt derefter 3D rekonstrueres til kvantificering af A &# 946; rumligt colocalized inden fagolysosomet. Vi viser den vellykkede anvendelse af q3DISM til muse- og rottehjerner, men denne metode kan udvides til stort set alle fagocytisk begivenhed i helst væv.

Introduction

Alzheimers sygdom (AD), den mest almindelige aldersrelateret demens 1, er karakteriseret ved cerebral amyloid-β (Ap) akkumulering som "senile" p-amyloid plaques, kronisk lavt niveau neuroinflammation, tauopati, neurontab og kognitive forstyrrelser 2 . I AD patient hjerner, er neuroinflammation øremærket af reaktiv astrocytter og mononukleære fagocytter (benævnt mikroglia, selv om deres centrale vs. perifer oprindelse er fortsat uklart) omgiver Ap indskud 3. Da de medfødte immunforsvar vagtposter i CNS, er mikroglia centralt placeret for at rydde hjernen Ap. Imidlertid er mikroglial rekruttering til Ap plaques ledsaget af meget lidt, om nogen, Ap fagocytose 4,5. En hypotese er, at mikroglia er oprindeligt neurobeskyttende ved fagocyterende små forsamlinger Ap. Men i sidste ende disse celler bliver neurotoksisk som overvældende Ap-byrde og / eller aldersrelaterede funktionelle decline, provokerer mikroglia i en dysfunktionel proinflammatorisk fænotype, der bidrager til neurotoksicitet og kognitiv tilbagegang 6.

Nylige genom-dækkende Association Studies (GWAS) har identificeret en klynge af AD risikofaktorer alleler tilhører centrale medfødte immun veje 7, som modulerer fagocytose 8-11. Derfor har immunresponset på cerebral amyloid aflejring blevet en vigtig område af interesse, både med hensyn til forståelsen af AD ætiologi og for at udvikle nye terapeutiske tilgange 12-14. Men der er et vitalt behov for metode til at vurdere Ap fagocytose in vivo. For at løse dette uopfyldt behov, har vi udviklet kvantitativ 3D i silico modellering (q3DISM) for at muliggøre ægte 3D kvantificering af cerebral Ap fagocytose med mononukleære fagocytter i gnavermodeller for Alzheimer-lignende sygdom.

Kun begrænset af det omfang, hvori de rekapitulere sygdom, dyremodeller harvist sig uvurderlig for forståelsen AD pathoetiology og for at vurdere eksperimentelle lægemidler. På grund af det faktum, at mutationer i Presenilin (PS) og amyloidprecursorprotein (APP) gener uafhængigt forårsage autosomal dominant AD, er disse mutante transgener blevet grundigt anvendt til at generere transgene gnavermodeller. Transgene APP / PS1-mus samtidigt at co-udtrykke "svenske" mutant human APP (APP SWE) og Δ exon 9 mutant human presenilin 1 (PS1ΔE9) til stede med accelereret cerebral amyloidosis og neuroinflammation 15,16. Endvidere har vi skabt bi-transgene rotter coinjiceret med APP swe og PS1ΔE9 konstruktioner (line TgF344-AD, på en Fischer 344 baggrund). I modsætning til transgene musemodeller af cerebral amyloidose, TgF344-AD rotter udvikler cerebral amyloid, der går forud tauopati, apoptotiske tab af neuroner, og adfærdsmæssig svækkelse 17.

I denne rapport beskriver vi en protokol for immunostaining mikroglia, phagolysosomes og Ap indskud i hjernen sektioner fra APP / PS1 mus og TgF344-AD rotter og erhvervelse af store z-dimensionelle konfokale billeder. Vi detaljer i silico generation og analyse af ægte 3D-rekonstruktioner fra konfokale datasæt tillader kvantificering af Ap optagelse i microgliale phagolysosomes. Mere bredt kan den metode, we detaljer her anvendes til at kvantificere stort set enhver form for fagocytose in vivo.

Protocol

Opgørelse af forskningsetik: Alle forsøg med dyr beskrevet heri blev godkendt af University of Southern California Institutional Animal Care og brug Udvalg (IACUC) og udføres i nøje overensstemmelse med National Institutes of Health retningslinjer og anbefalinger fra Foreningen for Vurdering og Akkreditering af Laboratorium Animal Care International. 1. gnaver Brain Isolering og Forberedelse til Immunfarvning DAG 1: Placer alderen TgF344-AD rotter (14 måneder gamle) eller…

Representative Results

Brug metodik den etapevise for q3DISM beskrevet ovenfor, er vi i stand til at kvantificere Ap optagelse i monocyt phagolysosomes i hjerner af APP / PS1 mus (figur 1) og TgF344-AD rotter (Figur 2). Derfor har q3DISM metode aktiveret analyse af mononukleære fagocytter i muse- og rottemodeller af AD. Interessant er det volumen, der optages af CD68 + phagolysosomes steget betydeligt i Iba1 + mononukleære fagocytter forbundet med samme…

Discussion

Den protokol, som vi beskriver i denne rapport for ægte 3D kvantificering af Ap fagocytose in vivo ved mononukleære fagocytter afhængig særlig mærkning af cellulære og subcellulære rum samt Ap indskud. Specifikt anvender vi Iba1 (ioniseret-calciumbindende Adaptor molekyle 1), et protein, der er involveret i membranen ruffling og fagocytose ved celleaktivering 18, 19, til at farve cerebrale mononukleære fagocytter. Mens Iba1 + celler generelt betragtes som hjer…

Declarações

The authors have nothing to disclose.

Acknowledgements

M-V.G-S. is supported by a BrightFocus Foundation Alzheimer’s Disease Research Fellowship Award (A2015309F) and an Alzheimer’s Association, California Southland Chapter Young Investigator Award. T.M.W. is supported by an ARCS Foundation and John Douglas French Alzheimer’s Foundation Maggie McKnight Russell-JDFAF Memorial Postdoctoral Fellowship. This work was supported by the National Institute on Neurologic Disorders and Stroke (1R01NS076794-01, to T.T.), an Alzheimer’s Association Zenith Fellows Award (ZEN-10-174633, to T.T.), and an American Federation of Aging Research/Ellison Medical Foundation Julie Martin Mid-Career Award in Aging Research (M11472, to T.T.). We are grateful for startup funds from the Zilkha Neurogenetic Institute, which helped to make this work possible.  

Materials

Isoflurane Abbott NDC 0044-5260-05
Dissecting scissors VWR 82027-582
Dissecting scissors Blunt tip VWR 82027-588
Tweezers VWR 94024-408
23G needle VWR BD305145
peristaltic pump FH10 Thermo Scientific 72-310-010
PBS 10X Bioland Scientific PBS01-02 Working concentration 1X
Adult Mouse Brain Matrix, Coronal slices, Stainless Steel 1mm  Kent Scientific RBMS-200C
Adult Rat Brain Matrix, Coronal slices, Stainless Steel 1mm  Kent Scientific RBMS-305C 
32% Paraformaldehyde aqueous solution EMS 15714-S Caution: Toxic. Working concentration 4% in PBS
Ethanol VWR 89125-188 Various concentrations, see protocol
Tissue-Tek Uni-cassettes Sakura VWR 25608-774
Embedding and Infiltration Paraffin VWR 15147-839
Microtome Leica RM2125 Leica Biosystems
Disposable Microtome Blades  VWR 25608-964
Water bath Leica HI 1210 Leica Biosystems
Micro slide Superfrost plus VWR 48311-703
Xylene Sigma-Aldrich 534056-4X4L Caution: Toxic 
Target Retrieval Solution 10X DAKO S1699 Working concentration 1X
KimWipes VWR 21905-026
Hydrophobic PAP pen VWR 95025-252
Triton X-100 VWR 97062-208
Normal Donkey Serum Jackson Immuno 017-000-121
Coverslips VWR 48393081
Prolong Gold antifade reagent with DAPI Life Technologies P36935
Glass Slide Rack VWR 100492-942
Iba1 antibody (polyclonal, rabbit) Wako 019-19741  Working concentration 1:200
Iba1 antibody (polyclonal, goat) LifeSpan Bioscience LS-B2645 Working concentration 1:200
rat CD68 [KP1] antibody (monoclonal, mouse) Abcam ab955 Working concentration 1:200
mouse CD68 [FA-11] antibody (monoclonal, rat) Abcam ab53444 Working concentration 1:200
mouse CD107a (LAMP1) antibody (monoclonal, rat) Affymetrix 14-1071 Working concentration 1:100
Beta-Amyloid, 17-24 (4G8) antibody (monoclonal, mouse) Covance SIG-39220 Working concentration 1:200
Beta-Amyloid, 1-16 (6E10) antibody (monoclonal, mouse) Covance SIG-39320 Working concentration 1:200
OC antibody (polyclonal, rabbit) Gifted by D. H. Cribbs and C. G. Glabe (UC Irvine) Working concentration 1:200
Alexa Fluor 488  mouse secondary antibody Invitrogen A-11001 Working concentration 1:1000
Alexa Fluor 488  rat secondary antibody Invitrogen A-11006 Working concentration 1:1000
Alexa Fluor 594 rabbit secondary antibody Invitrogen A-11037 Working concentration 1:1000
Alexa Fluor 594 goat secondary antibody Invitrogen A-11080 Working concentration 1:1000
Alexa Fluor 647 mouse secondary antibody Invitrogen A-21235 Working concentration 1:1000
Alexa Fluor 647 rabbit secondary antibody Invitrogen A-21443 Working concentration 1:1000
Immersion oil Nikon 
A1 Confocal microscope Nikon 
NIS Elements Advanced Research software Nikon 
Imaris:Bitplane software version 7.6 Bitplane "coloc" and "supass" modules are used. Alternatively, the open-source freeware ImageJ can be used for colocalization analysis of confocal z-stacks datasets.

Referências

  1. Brookmeyer, R., et al. National estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimers Dement. 7 (1), 61-73 (2011).
  2. Selkoe, D. J. Alzheimer’s disease. Cold Spring Harb Perspect Biol. 3 (7), (2011).
  3. Heneka, M. T., Golenbock, D. T., Latz, E. Innate immunity in Alzheimer’s disease. Nat Immunol. 16 (3), 229-236 (2015).
  4. Mawuenyega, , et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science. 330 (6012), 1774 (2010).
  5. Hickman, S. E., Allison, E. K., El Khoury, J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci. 28 (33), 8354-8360 (2008).
  6. Johnston, H., Boutin, H., Allan, S. M. Assessing the contribution of inflammation in models of Alzheimer’s disease. Biochem Soc Trans. 39 (4), 886-890 (2011).
  7. Gjoneska, E., et al. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature. 518 (7539), 365-369 (2015).
  8. Reitz, C., Mayeux, R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol. 88 (4), 640-651 (2014).
  9. Hazrati, L. -. N., et al. Genetic association of CR1 with Alzheimer’s disease: a tentative disease mechanism. Neurobiol Aging. 33 (12), 2949 (2012).
  10. Griciuc, A., et al. Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of Amyloid Beta. Neuron. , 1-13 (2013).
  11. Li, X., Long, J., He, T., Belshaw, R., Scott, J. Integrated genomic approaches identify major pathways and upstream regulators in late onset Alzheimer’s disease. Scientific reports. 5, 12393 (2015).
  12. Weitz, T. M., Town, T. Microglia in Alzheimers Disease: “Its All About Context”. Int J Alzheimers Dis. , 314185 (2012).
  13. Guillot-Sestier, M. -. V., Doty, K. R., Town, T. Innate Immunity Fights Alzheimer’s Disease. Trends Neurosci. 38 (11), 674-681 (2015).
  14. Guillot-Sestier, M. -. V., Town, T. Innate immunity in Alzheimer’s disease: a complex affair. CNS Neurol Disord Drug Targets. 12 (5), 593-607 (2013).
  15. Jankowsky, J. L., Slunt, H. H., Ratovitski, T., Jenkins, N. A., Copeland, N. G., Borchelt, D. R. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng. 17 (6), 157-165 (2001).
  16. Guillot-Sestier, M. -. V., et al. Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron. 85 (3), 534-548 (2015).
  17. Cohen, R. M., et al. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric aβ, and frank neuronal loss. J Neurosci. 33 (15), 6245-6256 (2013).
  18. Imai, Y., Ibata, I., Ito, D., Ohsawa, K., Kohsaka, S. A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem. Biophys. Res. Commun. 224 (3), 855-862 (1996).
  19. Ohsawa, K., Imai, Y., Sasaki, Y., Kohsaka, S. Microglia/macrophage-specific protein Iba1 binds to fimbrin and enhances its actin-bundling activity. J Neurochem. 88 (4), 844-856 (2004).
  20. Bandyopadhyay, U., Nagy, M., Fenton, W. A., Horwich, A. L. Absence of lipofuscin in motor neurons of SOD1-linked ALS mice. Proc Natl Acad Sci U S A. 111 (30), 11055-11060 (2014).
  21. Holness, C. L., Simmons, D. L. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood. 81 (6), 1607-1613 (1993).
  22. Connor, T., et al. Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron. 60 (6), 988-1009 (2008).
  23. Cai, D., et al. Phospholipase D1 corrects impaired betaAPP trafficking and neurite outgrowth in familial Alzheimer’s disease-linked presenilin-1 mutant neurons. Proc Natl Acad Sci U S A. 103 (6), 1936-1940 (2006).
  24. Marsh, S. E., et al. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function. Proc Natl Acad Sci U S A. 113 (9), 1316-1325 (2016).
  25. Lefterov, I., et al. Apolipoprotein A-I deficiency increases cerebral amyloid angiopathy and cognitive deficits in APP/PS1DeltaE9 mice. J Biol. Chem. 285 (47), 36945-36957 (2010).
  26. Blurton-Jones, M., et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A. 106 (32), 13594-13599 (2009).
  27. Stalder, M., Deller, T., Staufenbiel, M., Jucker, M. 3D-Reconstruction of microglia and amyloid in APP23 transgenic mice: no evidence of intracellular amyloid. Neurobiol Aging. 22 (3), 427-434 (2001).
  28. Leinenga, G., Götz, J. Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model. Sci Transl Med. 7 (278), 33 (2015).
  29. Liarski, V. M., et al. Cell distance mapping identifies functional T follicular helper cells in inflamed human renal tissue. Sci Transl Med. 6 (230), 46 (2014).
  30. Nichols, L., Pike, V. W., Cai, L., Innis, R. B. Imaging and in vivo quantitation of beta-amyloid: an exemplary biomarker for Alzheimer’s disease. Biol Psychiatry. 59 (10), 940-947 (2006).
  31. Skovronsky, D. M., Zhang, B., Kung, M. P., Kung, H. F., Trojanowski, J. Q., Lee, V. M. In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 97 (13), 7609-7614 (2000).
  32. Lian, H., Litvinchuk, A., Chiang, A. C. -. A., Aithmitti, N., Jankowsky, J. L., Zheng, H. Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer’s Disease. J Neurosci. 36 (2), 577-589 (2016).
  33. Novotny, R., et al. Conversion of Synthetic Aβ to In Vivo Active Seeds and Amyloid Plaque Formation in a Hippocampal Slice Culture Model. J Neurosci. 36 (18), 5084-5093 (2016).
  34. Tartaro, K., et al. Development of a fluorescence-based in vivo phagocytosis assay to measure mononuclear phagocyte system function in the rat. J Immunotoxicol. 12 (3), 239-246 (2015).
check_url/pt/54868?article_type=t

Play Video

Citar este artigo
Guillot-Sestier, M., Weitz, T. M., Town, T. Quantitative 3D In Silico Modeling (q3DISM) of Cerebral Amyloid-beta Phagocytosis in Rodent Models of Alzheimer’s Disease. J. Vis. Exp. (118), e54868, doi:10.3791/54868 (2016).

View Video