Summary

脂肪干细胞的软骨细胞分化诱导离心重力

Published: February 24, 2017
doi:

Summary

Mechanical stress can induce the chondrogenic differentiation of stem cells, providing a potential therapeutic approach for the repair of impaired cartilage. We present a protocol to induce the chondrogenic differentiation of adipose-derived stem cells (ASCs) using centrifugal gravity (CG). CG-induced upregulation of SOX9 results in the development of chondrogenic phenotypes.

Abstract

Impaired cartilage cannot heal naturally. Currently, the most advanced therapy for defects in cartilage is the transplantation of chondrocytes differentiated from stem cells using cytokines. Unfortunately, cytokine-induced chondrogenic differentiation is costly, time-consuming, and associated with a high risk of contamination during in vitro differentiation. However, biomechanical stimuli also serve as crucial regulatory factors for chondrogenesis. For example, mechanical stress can induce chondrogenic differentiation of stem cells, suggesting a potential therapeutic approach for the repair of impaired cartilage. In this study, we demonstrated that centrifugal gravity (CG, 2,400 × g), a mechanical stress easily applied by centrifugation, induced the upregulation of sex determining region Y (SRY)-box 9 (SOX9) in adipose-derived stem cells (ASCs), causing them to express chondrogenic phenotypes. The centrifuged ASCs expressed higher levels of chondrogenic differentiation markers, such as aggrecan (ACAN), collagen type 2 alpha 1 (COL2A1), and collagen type 1 (COL1), but lower levels of collagen type 10 (COL10), a marker of hypertrophic chondrocytes. In addition, chondrogenic aggregate formation, a prerequisite for chondrogenesis, was observed in centrifuged ASCs.

Introduction

在关节软骨缺损不自然愈合。因此,干细胞移植已被提出作为削弱的软骨的修复一个有前途的方法。然而,该方法需要有足够数量的干细胞的同时获取和这些细胞的诱导来进行软骨细胞分化。骨髓(BM)已被广泛使用作为干细胞的来源,但是从骨髓细胞分离有两个主要的缺点:侵袭和产量不足。因为它易于获得的,脂肪组织是干细胞的一个优选来源。以往的研究表明,从脂肪组织中分离干细胞和诱导用细胞因子,如TGF-β11,2这些细胞软骨分化的可行性。这些方法是有效的,但价格昂贵。

作为一个成本较低的替代细胞因子,机械应力可以用来诱导软骨细胞分化。机械加载在维持关节软骨3的健康至关重要的作用,并且它可以诱导各种细胞软骨表型。例如,静水压经由MAP激酶/ JNK途径4诱导滑膜衍生的祖细胞的软骨形成的表型,和机械压缩通过上调软骨基因5诱导软骨在人类间质干细胞(MSCs)。此外,剪切应力有助于软骨相关的细胞外基质(ECM)的人MSC 6的表达。离心重力(CG),离心产生很容易地应用和控制的机械应力,可诱导细胞7差异表达基因。例如,在肺上皮癌细胞,白细胞介素(IL)-1b的表达通过离心8上调。 ŧherefore,作为实验诱导机械应力,CG可用于诱导干细胞软骨基因表达。然而,它的CG能否诱导干细胞的软骨细胞分化还不清楚。

在这项研究中,我们发现,CG诱导SOX9的上调,软骨的主要调控,在人类携带者,导致软骨细胞基因的过度表达。此外,我们比较的CG上与TGF-β1的软骨的影响,生长因子最常用于在体外诱导软骨中的干细胞。

Protocol

该研究方案是根据美国国立卫生研究院的指导方针批准由韩国天主教大学(KC16EAME0162)的机构审查委员会和执行。与书面知情同意书,得到的所有组织。 1.离心重力加载和颗粒文化细胞培养和收获培养的ASC(P2-P3;见材料的列表)在补充有10%胎牛血清(FBS)和1%青霉素/链霉素(P / S)的Dulbecco改良的Eagle氏培养基,低葡萄糖(DMEM-LG)中于37℃下在含有5%CO 2</s…

Representative Results

离心重力诱导的脂肪来源的干细胞的软骨形成分化标记物的表达。 以确定的离心力重力是适于诱导软骨细胞分化的程度,携带者用15分钟不同程度的CG(0,300,600,1200,2400 XG)刺激。刺激之后,将携带者进行了重新接种到培养板和培养24小时。如在图1A中所示,SOX9 mRNA表达显著2400 xg离心增加;它是约2400 XG比(携带?…

Discussion

细胞的干性状态为SOX9的CG诱导过表达非常重要的。在我们的研究中,SOX9的表达可以通过CG在早期传代的ASC(2-3)引起的,而不是在后面通道的ASC。已经报道的是,在培养过程中,携带者包含CD34 +细胞,直至3代16。的ASCs往往失去的CD34的表达作为将细胞传代,从而产生至CG低响应。

离心重力,静水压力可以刺激CG过程中加载到细胞。因此,介质的体积可能是影?…

Declarações

The authors have nothing to disclose.

Acknowledgements

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI14C2116) and by Research Fund of Seoul St. Mary’s Hospital, The Catholic University of Korea.

Materials

Plasticware
100mm Dish TPP 93100
60mm Dish TPP 93060
50 mL Cornical Tube SPL 50050
15 mL Cornical Tube SPL 50015
10 mL Disposable Pipette Falcon 7551
5 mL Disposable Pipette Falcon 7543
Name Company Catalog Number Comments
ASC Culture Media Materials
DPBS Life Technologies 14190-144
DMEM Low glucose Life Technologies 11885-084 growth base media
Penicilin Streptomycin Sigma Aldrich P4333 1%
Fetal Bovine Serum Life Technologies 16000-044 10%
PBS/1 mM EDTA Life Technologies 12604-039
Name Company Catalog Number Comments
Chondrogenic Differentiation Media Materials
DMEM High glucose Life Technologies 11995 chondrogenic differentiation base media
MEM Non-Essential Amino Acids Solution (100X) Life Technologies 11140-050
Dexamethasone Sigma Aldrich D2915 100nM
Penicilin Streptomycin Life Technologies P4333 1%
Fetal Bovine Serum Life Technologies 16000-044 1%
Ascorbate-2-phosphate Sigma Aldrich A8960 50ug/ml
L-proline Sigma Aldrich P5607 50ug/ml
ITS BD 354352 1%
Human TGFβ1 Peprotech 100-21 10ng/ml
Name Company Catalog Number Comments
Materials
18 mm Cover Glass Superior HSU-0111580
4% Paraformaldyhyde Tech & Innovation BPP-9004
Tween 20 BIOSESANG T1027
Bovine Serum Albumin Vector Lab SP-5050
Anti-Collagen II antibody abcam  ab34712 1:100
 Goat anti-Rabbit IgG (H+L) Secondary Antibody,
 Alexa Fluor 594 conjugate 
Molecular Probe  A-11037 1:200
DAPI Molecular Probe D1306
Prolong gold antifade reagent Invitrogen P36934
Slide Glass, Coated Hyun Il Lab-Mate HMA-S9914
Trizol Invitrogen 15596-018
Chloroform Sigma Aldrich 366919
Isoprypylalcohol Millipore 109634
Ethanol Duksan 64-17-5
RevertAid First Strand cDNA Synthesis kit Thermo Scientfic K1622
i-Taq DNA Polymerase iNtRON BIOTECH 25021
UltraPure 10X TBE Buffer Life Technologies 15581-044
loading star Dyne Bio A750
Agarose Sigma-Aldrich 9012-36-6
1kb (+) DNA ladder marker Enzynomics DM003
Human adipose-derived stem cells (ASCs)  Catholic MASTER Cells

Referências

  1. Awad, H. A., Halvorsen, Y. D., Gimble, J. M., Guilak, F. Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng. 9 (6), 1301-1312 (2003).
  2. Erickson, G. R., et al. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun. 290 (2), 763-769 (2002).
  3. Sah, R. L., et al. Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res. 7 (5), 619-636 (1989).
  4. Sakao, K., et al. Induction of chondrogenic phenotype in synovium-derived progenitor cells by intermittent hydrostatic pressure. Osteoarthritis Cartilage. 16 (7), 805-814 (2008).
  5. Li, Z., Yao, S. J., Alini, M., Stoddart, M. J. Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites is modulated by frequency and amplitude of dynamic compression and shear stress. Tissue Eng Part A. 16 (2), 575-584 (2010).
  6. Alves da Silva, M. L., et al. Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor. J Tissue Eng Regen Med. 5 (9), 722-732 (2011).
  7. Maeda, S., et al. Changes in microstructure and gene expression of articular chondrocytes cultured in a tube under mechanical stress. Osteoarthritis Cartilage. 13 (2), 154-161 (2005).
  8. Yang, J., Hooper, W. C., Phillips, D. J., Tondella, M. L., Talkington, D. F. Centrifugation of human lung epithelial carcinoma a549 cells up-regulates interleukin-1beta gene expression. Clin Diagn Lab Immunol. 9 (5), 1142-1143 (2002).
  9. Rio, D. C., Ares, M., Hannon, G. J., Nilsen, T. W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. (6), (2010).
  10. Lorenz, T. C. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J Vis Exp. (63), e3998 (2012).
  11. Jang, Y., et al. UVB induces HIF-1alpha-dependent TSLP expression via the JNK and ERK pathways. J Invest Dermatol. 133 (11), 2601-2608 (2013).
  12. Wu, Y. L., et al. Immunodetection of human telomerase reverse-transcriptase (hTERT) re-appraised: nucleolin and telomerase cross paths. J Cell Sci. 119, 2797-2806 (2006).
  13. Bobick, B. E., Chen, F. H., Le, A. M., Tuan, R. S. Regulation of the chondrogenic phenotype in culture. Birth Defects Res C Embryo Today. 87 (4), 351-371 (2009).
  14. Akiyama, H., Chaboissier, M. C., Martin, J. F., Schedl, A., de Crombrugghe, B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 16 (21), 2813-2828 (2002).
  15. Lefebvre, V., Huang, W., Harley, V. R., Goodfellow, P. N., de Crombrugghe, B. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol. 17 (4), 2336-2346 (1997).
  16. Jang, Y., et al. Characterization of adipose tissue-derived stromal vascular fraction for clinical application to cartilage regeneration. In Vitro Cell Dev Biol Anim. 51 (2), 142-150 (2015).
  17. Chen, J., et al. Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials. 32 (21), 4793-4805 (2011).
  18. Janzen, V., et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature. 443 (7110), 421-426 (2006).
  19. Muraglia, A., Cancedda, R., Quarto, R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci. 113, 1161-1166 (2000).
check_url/pt/54934?article_type=t

Play Video

Citar este artigo
Jang, Y., Jung, H., Ju, J. H. Chondrogenic Differentiation Induction of Adipose-derived Stem Cells by Centrifugal Gravity. J. Vis. Exp. (120), e54934, doi:10.3791/54934 (2017).

View Video