Summary

高纯度对称 Dialkylphosphinic 酸萃取的合成

Published: October 19, 2017
doi:

Summary

介绍了一种合成高纯度对称 dialkylphosphinic 酸萃取的协议, 以 (23-dimethylbutyl) (24, 4 ‘-2,4,4-) 膦酸为例。

Abstract

本文以 (23-dimethylbutyl) (24、4-2,4,4-) 膦酸的合成为例, 说明了一种合成高纯度对称 dialkylphosphinic 酸萃取的方法。以低毒磷酸钠为磷源, 与烯烃 A (23-二甲基-1-丁烯) 发生反应, 生成 monoalkylphosphinic 酸中间体。采用金刚烷胺除去 dialkylphosphinic 酸副产品, 因为只有 monoalkylphosphinic 酸能与金刚烷胺反应形成 amantadine∙mono-alkylphosphinic 酸盐, 而 dialkylphosphinic 酸不能与金刚烷胺反应, 因为其巨大的空间位阻。纯化后的 monoalkylphosphinic 酸与烯烃 B (丁烯) 反应产生对称 dialkylphosphinic 酸 (NSDAPA)。未 monoalkylphosphinic 酸可以通过简单的碱酸后处理去除, 通过钴盐的沉淀可以分离出其他有机杂质。(23-dimethylbutyl) (24, 4 ‘-2,4,4-) 膦酸的结构由31P 核磁共振、 1H 核磁共振、ESI 质谱和 FT IR 证实。纯度由电位滴定法测定, 结果表明纯度可超过96%。

Introduction

酸性有机磷萃取被广泛应用于传统的湿法冶金领域, 用于稀土离子的萃取和分离1,2, 有色金属 (如钴/镍3,4), 稀有金属 (如 Hf/锆5, V6,7), 锕8,。近年来, 它们在二次资源回收和高级液体废物处理方面也引起了更多的关注9。二 (2-乙基己基) 磷酸 (D2EHPA 或 P204), 2-ethylhexylphosphoric 酸 mono-2-ethylhexyl 酯 (EHEHPA, PC 88A, 或 P507), 和 di (24, 4 ‘-2,4,4-)-膦酸 (Cyanex272), 是 dialkylphosphoric 酸的代表,alkylphosphoric 酸单烷基酯和 dialkylphosphinic 酸分别是最常用的萃取。它们的酸度按以下顺序递减: P204 和 #62; P507 和 #62; Cyanex 272。相应的萃取能力、萃取能力、剥离酸度均为 P204 和 #62; P507 和 #62; Cyanex 272, 分离性能则相反。在大多数情况下, 这三萃取是有效的。然而, 仍有一些条件, 它们不是如此有效: 在重稀土分离, 其中存在的主要问题是选择性差, 高剥离酸性 P204 和 P507, 低萃取能力, 和乳液的趋势在提取期间为 Cyanex 272。近年来, 小说萃取的发展引起了人们的广泛关注。

dialkylphosphinic 酸萃取被认为是开发新萃取的重要研究方向之一。最近的研究表明, dialkylphosphinic 酸的提取能力主要取决于烷基取代基的结构10,11。它的范围可能比 Cyanex 27212的 P507 要低得多。然而, 对新型 dialkylphosphinic 酸萃取的探索仅限于商用烯烃结构1012131415, 16。虽然 dialkylphosphinic 酸萃取也可以通过氏反应的方法合成, 但反应条件是严格的12,17

NSDAPA, 其中两个烷基是不同的, 打开一扇门, 探索新的萃取。它使 dialkylphosphinic 酸的结构更加多样化, 其提取和分离性能可以通过对它的烷基结构进行 fine-tuned。传统的 NSDAPA 合成方法采用 PH 值为3作为磷源, 具有毒性高、反应条件严格、不易纯化等诸多缺点。最近, 我们报告了一种新的合成 NSDAPA 的方法, 利用磷酸钠作为磷源 (参见图 1) 并成功合成了三 NSDAPAs18。这个详细的协议可以帮助新的实践者重复实验, 掌握 NSDAPA 萃取的合成方法。我们以 (23-dimethylbutyl) (24, 4 ‘-2,4,4-) 膦酸为例。在表 1中显示了烯烃 a、单 alkylphosphinic 酸中间体、烯烃 B 和相应的 NSDAPA 的名称和结构。

Protocol

1. 单 (23-dimethylbutyl) 膦酸的合成 18 , 19 反应 重 31.80 g 磷酸钠次水合物, 16.00g 乙酸, 8.42 克 23-二甲基-1-丁烯, 0.73 g di- 叔 butylnperoxide (DTBP), 和25.00 克四氢呋喃 (呋喃) 成100毫升聚四氟乙烯内衬不锈钢高压釜, 把一个磁力搅拌器放入高压釜, 并密封它. 将高压釜置于垂直管式炉中, 其下是磁性 stirringapparatus。启动磁…

Representative Results

31用金刚烷胺法 (图 1a-b) 纯化前后的单 (23-dimethylbutyl) 膦酸的核磁共振谱。31P 核磁共振谱1H 核磁共振谱、MS 谱和 FT 红外光谱分别收集 (23-dimethylbutyl) (24、4-2,4,4-) 膦酸 (见图 3、图 4、图 5和图 6) 后用钴盐沉淀法提纯。(23-dimethy…

Discussion

协议中最关键的步骤是单 alkylphosphinic 酸合成 (图 1a)。在这个反应中, 较高的产量和较少的 dialkylphosphinic 酸 by-product 是更好的。增加 NaH2PO2/烯烃 A 的摩尔比将提高产量, 抑制 dialkylphosphinic 酸 by-product 的产生。但是, 大型 NaH2PO2用量也会增加成本并引起搅拌问题。NaH2PO2/烯烃 A 的首选摩尔比为3:1。作为溶剂, 呋喃是优?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了中国国家自然科学基金 (21301104)、中央大学基础研究基金 (FRF-TP-16-019A3) 和国家重点化学工程实验室 (SKL-ChE-14A04) 的支持。

Materials

sodium hypophosphite hydrate Tianjin Fuchen Chemical Reagents Factory Molecular formula: NaH2PO2∙H2O, purity ≥99.0%
2,3-dimethyl-1-butene Adamas Reagent Co., Ltd. Molecular formula: C6H12, purity ≥99%
diisobutylene Shanghai Aladdin Bio-Chem Technology Co., LTD Molecular formula: C8H16, purity 97%
acetic acid Sinopharm Chemical Reagent Co., Ltd. Molecular formula: C2H4O2, purity ≥99.5%
di-tert-butylnperoxide Sinopharm Chemical Reagent Co., Ltd. Molecular formula: C8H18O2, purity ≥97.0%
tetrahydrofuran Beijing Chemical Works Molecular formula: C4H8O, purity A.R.
amantadine hydrochloride Shanghai Aladdin Bio-Chem Technology Co., LTD Molecular formula: C10H17N∙HCl, purity 99%
ethyl ether Sinopharm Chemical Reagent Co., Ltd. Molecular formula: C4H10O, purity ≥99.7%
ethyl acetate Xilong Chemical Co., Ltd. Molecular formula: C4H8O2, purity ≥99.5%
acetone Beijing Chemical Works Molecular formula: C3H6O, purity ≥99.5%
sodium hydroxide Xilong Chemical Co., Ltd. Molecular formula: NaOH, purity ≥96.0%
concentrated sulfuric acid Sinopharm Chemical Reagent Co., Ltd. Molecular formula: H2SO4, purity 95-98%
hydrochloric acid Beijing Chemical Works Molecular formula: HCl, purity 36-38%
sodium chloride Sinopharm Chemical Reagent Co., Ltd. Molecular formula: NaCl, purity ≥99.5%
anhydrous magnesium sulfate Tianjin Jinke Institute of Fine Chemical Industry Molecular formula: MgSO4, purity ≥99.0%
Cobalt(II) chloride hexahydrate Xilong Chemical Co., Ltd. Molecular formula: CoCl2∙6H2O, purity ≥99.0%

Referências

  1. Swain, B., Otu, E. O. Competitive extraction of lanthanides by solvent extraction using Cyanex 272: Analysis, classification and mechanism. Sep Purif Technol. 83, 82-90 (2011).
  2. Wang, Y. L., et al. The novel extraction process based on CYANEX (R) 572 for separating heavy rare earths from ion-adsorbed deposit. Sep Purif Technol. 151, 303-308 (2015).
  3. Regel-Rosocka, M., Staszak, K., Wieszczycka, K., Masalska, A. Removal of cobalt(II) and zinc(II) from sulphate solutions by means of extraction with sodium bis(2,4,4-trimethylpentyl)phosphinate (Na-Cyanex 272). Clean Technol Envir. 18 (6), 1961-1970 (2016).
  4. Hereijgers, J., et al. Separation of Co(II)/Ni(II) with Cyanex 272 using a flat membrane microcontactor: Stripping kinetics study, upscaling and continuous operation. Chem Eng Res Des. 111, 305-315 (2016).
  5. Lee, M. S., Banda, R., Min, S. H. Separation of Hf(IV)-Zr(IV) in H2SO4 solutions using solvent extraction with D2EHPA or Cyanex 272 at different reagent and metal ion concentrations. Hydrometallurgy. 152, 84-90 (2015).
  6. Noori, M., Rashchi, F., Babakhani, A., Vahidi, E. Selective recovery and separation of nickel and vanadium in sulfate media using mixtures of D2EHPA and Cyanex 272. Sep Purif Technol. 136, 265-273 (2014).
  7. Li, X. B., et al. Thermodynamics and mechanism of vanadium(IV) extraction from sulphate medium with D2EHPA, EHEHPA and CYANEX 272 in kerosene. Trans Nonferrous Met Soc China. 22 (2), 461-466 (2012).
  8. Das, D., et al. Effect of the nature of organophosphorous acid moiety on co-extraction of U(VI) and mineral acid from aqueous solutions using D2EHPA, PC88A and Cyanex 272. Hydrometallurgy. 152, 129-138 (2015).
  9. Baba, A. A., et al. Extraction of copper from leach liquor of metallic component in discarded cell phone by Cyanex (R) 272. JESTEC. 11 (6), 861-871 (2016).
  10. Du, R. B., et al. Microwave-assisted synthesis of dialkylphosphinic acids and a structure-reactivity study in rare earth metal extraction. RSC Adv. 5 (126), 104258-104262 (2015).
  11. Du, R. B., et al. alpha, beta-Substituent effect of dialkylphosphinic acids on anthanide extraction. RSC Adv. 6 (61), 56004-56008 (2016).
  12. Wang, J. L., Xu, S. X., Li, L. Y., Li, J. Synthesis of organic phosphinic acids and studies on the relationship between their structure and extraction-separation performance of heavy rare earths from HNO3 solutions. Hydrometallurgy. 137, 108-114 (2013).
  13. Hino, A., Nishihama, S., Hirai, T., Komasawa, I. Practical study of liquid-liquid extraction process for separation of rare earth elements with bis (2-ethylhexyl) phosphinic acid. J Chem Eng Jpn. 30 (6), 1040-1046 (1997).
  14. Ju, Z. J., et al. Synthesis and extraction performance of di-decylphosphinic acid. Chin J Nonferrous Met. 20 (11), 2254-2259 (2010).
  15. Li, L. Y., et al. Dialkyl phosphinic acids: Synthesis and applications as extractant for nickel and cobalt separation. Trans Nonferrous Met Soc China. 20, 205-210 (2010).
  16. Wang, J. L., et al. Solvent extraction of rare earth ions from nitrate media with new extractant di-(2,3-dimethylbutyl)-phosphinic acid. J Rare Earths. 34 (7), 724-730 (2016).
  17. Hu, W. X. Synthesis and properties of di-tertiary alkylphosphinic acids. Chem J Chin Univ-Chin. 15 (6), 849-853 (1994).
  18. Wang, J. L., Chen, G., Xu, S. M., Li, L. Y. Synthesis of novel nonsymmetric dialkylphosphinic acid extractants and studies on their extraction-separation performance for heavy rare earths. Hydrometallurgy. 154, 129-136 (2015).
  19. Wang, J. L., Xie, M. Y., Wang, H. J., Xu, S. M. Solvent extraction and separation of heavy rare earths from chloride media using nonsymmetric (2,3-dimethylbutyl)(2,4,4′-trimethylpentyl)phosphinic acid. Hydrometallurgy. 167, 39-47 (2017).
  20. Menoyo, B., Elizalde, M. P., Almela, A. Determination of the degradation compounds formed by the oxidation of thiophosphinic acids and phosphine sulfides with nitric acid. Anal Sci. 18 (7), 799-804 (2002).
  21. Darvishi, D., et al. Synergistic effect of Cyanex 272 and Cyanex 302 on separation of cobalt and nickel by D2EHPA. Hydrometallurgy. 77, 227-238 (2005).
check_url/pt/56156?article_type=t

Play Video

Citar este artigo
Wang, J., Xie, M., Liu, X., Xu, S. Synthesis of High Purity Nonsymmetric Dialkylphosphinic Acid Extractants. J. Vis. Exp. (128), e56156, doi:10.3791/56156 (2017).

View Video