Summary

キャピラリー配列で複数の核酸の視覚的検出

Published: November 15, 2017
doi:

Summary

このプロトコルでは、操作が簡単です、1 つのテストで複数の核酸の視覚的検出に適用することができます小さなに使えるカセットの製作について説明します。このアプローチでキャピラリー配列は遺伝子組み換えターゲットの多重化・高能率化の検出に使われました。

Abstract

病気の診断、微生物モニタリング、遺伝子組み換え作物 (GMO) 検出でマルチ ターゲット、短時間、および単一のテストを動作するように簡単に複数の核酸の検出のためリソース手頃な方法論が急務とフォレンシック分析。以前 calm (Capillary Array ベースLoop lamp 法核酸のMultiplex の視覚的検出の) プラットフォームを説明しました。ここで、改良試作し、このプラットフォームのパフォーマンス プロセスについて述べる。ここでは、核酸の多重の視覚的検出のためのキャピラリー配列によって組み立てられる小さい、すぐ使えるカセットを適用されます。キャピラリー配列で毛細血管ループ lamp 法 (ランプ) のプライマー セットを修正する前に疎水性と親水性パターンに前処理をされます。読み込みアダプターの組立後ランプ反応混合物が読み込まれ、1 回のピペッティング操作によって毛管力によるそれぞれの毛細血管に分離します。ランプの反応は、毛細血管に並列で実行されます。結果は手持ち UV 懐中電灯照明による視覚的に読み取られます。このプラットフォームを使用すると、頻繁に高い特異性と感度要素と GMO サンプルの遺伝子を登場 8 の監視を紹介します。要約すると、記載プラットフォームは複数の核酸の検出を容易にするものです。高スループット核酸分析が必要な分野で広く適用可能と考えています。

Introduction

臨床診断1,2,3, GMO 検出4などの分野の広い範囲で複数の核酸の同時検出のための低コスト、迅速、かつ使いやすいシステムが急務します。 5,6、微生物、特にポイント ・ オブ ・ ケア検査 (POCTs)、フォレンシック分析10,11,7,8,9の監視リソース通常限られた12,13,14はします。

ポリメラーゼの連鎖反応 (PCR)、リアルタイム PCR およびマルチプレックス PCR 派生メソッドを含む、これらのフィールドで検出するための最も広く応用テクニックです。ただし、これらの方法通常のみ検出ターゲットを 1 つ 1 つテスト15で、電気と高度な専門機器を要求します。

核酸を検出するための別の有望な技術はループ lamp 法 (ランプ) は最初に 2000年16で説明します。ランプは、高効率遺伝子検出法です。理論的には、一定温度、(すなわち60-65 ° C の間) で行うすべて 1 時間以内 amplicons 109枚に 1 コピーから増幅することができますそれ。成功した増幅は不溶性副産物ピロリン酸の大量を生産し、濁度17を直接肉眼で観測することができるの変化を引き起こします。金属イオンや水酸基ナフトール ブルー20や核酸色素1918カルセインの蛍光染料添加による色の変化がご覧いただけます。高感度の利点と操作の利便性のためランプが広く核酸の検出に適用されています。

現在、マルチプレックスアッセイ ランプの主に 2 つの方法があります。複数のランプを持っていることによって複数のランプの試金を実行することです 1 つ 1 つの管21,22,23のプライマーを設定します。しかし、多様性と増幅効率は、本質的な干渉と異なるプライマー セット間の競争によって制限でしょう。さらに、同じ反応の異なるランプ製品を識別するために困難になることができます。別の戦略は、物理的な分離に基づいています。個々 の小型コンパートメントに隔離された異なるプライマー セットと複数のランプの反応が同時に実行されます24,25。マイクロ流体チップに基づいています一般的に、これらのアプローチは、高スループット ランプ反応の潜在的なソリューションを提供します。しかし、チップの製造とプライマー セットの多重塗装の前処理は複雑で、コストが増加して再現性を減少させる可能性があります。

最近では、いくつかの研究は、マイクロ流体チップの複雑な加工をバイパスして、低コストの検出26,27を達成している毛細血管で実行するランプの反応を説明しています。ただし、ハイスループット分析に関してこれらの毛細血管に似ている PCR ストリップ管のミニチュア版サンプルと反応試薬 (異なるプライマー セットを含む) する必要がありますであるため個別に準備および別に配信毛細血管内の反応ユニット。並列とマルチプレックス解析を達成するために追加の機器、たとえばマルチ チャンネルのシリンジ ポンプはサンプルや試薬の並列読み込みに必要。

核酸の多重検出のための現在の方法に関連付けられている制限を克服するためには、キャピラリー配列とビジュアルのランプ技術を組み合わせた小型のプラットフォームを行った。このプラットフォームは、マルチ ターゲット、コンパクト サイズ、低コスト、および28を動作するように簡単です。ここで、キャピラリー アレイを作製し、配列のランプ反応を実行する方法の詳細について述べる。モデルとして遺伝子組み換え作物 (GMO) の検出を使用してここで説明されているプロトコルが標準化されました。重要なは、このプロトコルは、他の核酸ターゲットのハイスループット検出にも使用できます。

Protocol

注: このプロトコルは、目的のマイクロ チャネルおよび読み込みアダプターの形状のベアリング ステンレス鋼の金型が既に行われたこと前提としています (3 D ファイル 補足のファイル 1 として提供されますと 2。).このプロトコルはまた植物の DNA の隔離が行われて既に前提としています。 1 キャピラリー アレイ ・ ベースに使えるカセットの作…

Representative Results

このメソッドは、サンプルの読み込み中に別の毛細血管の間で交差汚染を防止することが重要です。このため、個々 の毛細血管でプライマーを保持できるキトサンは導入されました。それが働いたかどうかどうかをテストするため我々 固定済み”T”と”U”のパターンで毛細血管のカセットに設定 ADH1 (トウモロコシの遺伝子内因性参照) プライマーのよう<stron…

Discussion

ランプ技術を組み合わせたキャピラリー配列、単一の非常に効果的かつ簡単にテストの操作で複数の GMO 関連遺伝子ターゲットの同時検出を有効に穏やかなプラットフォームは、ここで示します。

カセットで多重ランプ反応を正常に実行、3 つの重要なポイントが注目される必要があります。まず、毛細血管の上側とキャピラリー配列の親水性と疎水性のパターンの同じ?…

Declarações

The authors have nothing to disclose.

Acknowledgements

新世紀優秀な才能のため、国立自然科学財団の中国の補助金 (31370813、3147670、31670831、31600672、)、国民のトランスジェニック植物特別基金 (2016ZX08012-003、005 2016ZX08012)、プログラムによって本研究は一部で賄われて大学、主要研究と中国 (2016YFA0500601) および中国ポスドク科学財団 (2016 M 591667) の開発プロジェクトです。

Materials

UltraEverDry(super-hydrophobic coat) UltraTech 4001 supplier:Exiron chemistry(CHINA) CO.,LTD.
PDMS Dow Corning 8332557
Bst polymerase New England BioLabs M0275L
betain Sigma-Aldrich B0300-1VL
calcein Sigma-Aldrich C0875-5G
MnCl2 Sigma-Aldrich MKBP0495V
MgSO4 New England BioLabs B1003S
dNTPs Shanghai Sangon B804BA0022
chitosan Shanghai Sangon LJ0805S309J
Photoshop 7.0 software Adobe Systems Inc., CA, USA Image analysis
GenePix Pro 6.1 Molecular Devices, CA, USA microarray analysis software
AutoCAD Adobe Systems Inc. 3D construction software
UV filter (ZWB2) YXSensing supplier : taobao

Referências

  1. Urdea, M., et al. Requirements for high impact diagnostics in the developing world. Nature. 444, 73-79 (2006).
  2. Yager, P., Domingo, G. J., Gerdes, J. Point-of-care diagnostics for global health. Annu Rev Biomed Eng. 10, 107-144 (2008).
  3. Opota, O., Jaton, K., Greub, G. Microbial diagnosis of bloodstream infection: towards molecular diagnosis directly from blood. Clin Microbiol Infec. 21 (4), 323-331 (2015).
  4. Guo, J., et al. MPIC: A High-Throughput Analytical Method for Multiple DNA Targets. Anal Chem. 83 (5), 1579-1586 (2011).
  5. Shao, N., et al. MACRO: a combined microchip-PCR and microarray system for high-throughput monitoring of genetically modified organisms. Anal Chem. 86 (2), 1269-1276 (2014).
  6. Kamle, S., Ali, S. Genetically modified crops: detection strategies and biosafety issues. Gene. 522 (2), 123-132 (2013).
  7. Galvin, S., Dolan, A., Cahill, O., Daniels, S., Humphreys, H. Microbial monitoring of the hospital environment: why and how?. J Hosp Infect. 82 (3), 143-151 (2012).
  8. Sciancalepore, A. G., et al. Microdroplet-based multiplex PCR on chip to detect foodborne bacteria producing biogenic amines. Food Microbiol. 35 (1), 10-14 (2013).
  9. Saxena, G., Bharagava, R. N., Kaithwas, G., Raj, A. Microbial indicators, pathogens and methods for their monitoring in water environment. J Water Health. 13 (2), 319-339 (2015).
  10. Hopwood, A. J., et al. Integrated Microfluidic System for Rapid Forensic DNA Analysis: Sample Collection to DNA Profile. Anal Chem. 82 (16), 6991-6999 (2010).
  11. Estes, M. D., et al. Optimization of multiplexed PCR on an integrated microfluidic forensic platform for rapid DNA analysis. Analyst. 137 (23), 5510-5519 (2012).
  12. Niemz, A., Ferguson, T. M., Boyle, D. S. Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 29 (5), 240-250 (2011).
  13. Peeling, R. W., Mabey, D. Point-of-care tests for diagnosing infections in the developing world. Clin Microbiol Infec. 16 (8), 1062-1069 (2010).
  14. Perkins, M. D., Kessel, M. What Ebola tells us about outbreak diagnostic readiness. Nat Biotechnol. 33 (5), 464-469 (2015).
  15. Li, Y., et al. A universal multiplex PCR strategy for 100-plex amplification using a hydrophobically patterned microarray. Lab Chip. 11 (21), 3609-3618 (2011).
  16. Notomi, T., et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28 (12), (2000).
  17. Mori, Y., Nagamine, K., Tomita, N., Notomi, T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun. 289 (1), 150-154 (2001).
  18. Tomita, N., Mori, Y., Kanda, H., Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc. 3 (5), 877-882 (2008).
  19. Iwamoto, T., Sonobe, T., Hayashi, K. Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M-avium, and M-intracellulare in sputum samples. J Clin Microbiol. 41 (6), 2616-2622 (2003).
  20. Goto, M., Honda, E., Ogura, A., Nomoto, A., Hanaki, K. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. Biotechniques. 46 (3), 167-172 (2009).
  21. Iseki, H., et al. Development of a multiplex loop-mediated isothermal amplification (mLAMP) method for the simultaneous detection of bovine Babesia parasites. J Microbiol Methods. 71 (3), 281-287 (2007).
  22. Liang, C., et al. Multiplex loop-mediated isothermal amplification detection by sequence-based barcodes coupled with nicking endonuclease-mediated pyrosequencing. Anal Chem. 84 (8), 3758-3763 (2012).
  23. Shao, Y., Zhu, S., Jin, C., Chen, F. Development of multiplex loop-mediated isothermal amplification-RFLP (mLAMP-RFLP) to detect Salmonella spp. and Shigella spp. in milk. Int J Food Microbiol. 148 (2), 75-79 (2011).
  24. Fang, X., Chen, H., Yu, S., Jiang, X., Kong, J. Predicting viruses accurately by a multiplex microfluidic loop-mediated isothermal amplification chip. Anal Chem. 83 (3), 690-695 (2011).
  25. Stedtfeld, R. D., et al. Gene-Z: a device for point of care genetic testing using a smartphone. Lab Chip. 12 (8), 1454-1462 (2012).
  26. Liu, D., Liang, G., Zhang, Q., Chen, B. Detection of Mycobacterium tuberculosis using a capillary-array microsystem with integrated DNA extraction, loop-mediated isothermal amplification, and fluorescence detection. Anal Chem. 85 (9), 4698-4704 (2013).
  27. Zhang, Y., et al. Point-of-Care Multiplexed Assays of Nucleic Acids Using Microcapillary-based Loop-Mediated Isothermal Amplification. Anal Chem. 86 (14), 7057-7062 (2014).
  28. Shao, N., et al. Visual detection of multiple genetically modified organisms in a capillary array. Lab Chip. 17 (3), 521-529 (2017).
  29. Lizardi, P. M., et al. Mutation detection and single-moledule counting using isothermal rolling-circle amplification. Nat Genet. , (1998).
  30. Piepenburg, O., Williams, C. H., Stemple, D. L., Armes, N. A. DNA detection using recombination proteins. Plos Biol. 4 (7), 1115-1121 (2006).
  31. Opota, O., Jaton, K., Greub, G. Microbial diagnosis of bloodstream infection: towards molecular diagnosis directly from blood. Clin Microbiol Infect. 21 (4), 323-331 (2015).
check_url/pt/56597?article_type=t

Play Video

Citar este artigo
Chen, J., Shao, N., Hu, J., Li, R., Zhu, Y., Zhang, D., Guo, S., Hui, J., Liu, P., Yang, L., Tao, S. Visual Detection of Multiple Nucleic Acids in a Capillary Array. J. Vis. Exp. (129), e56597, doi:10.3791/56597 (2017).

View Video