Summary

Accumulazione del tessuto adiposo del mouse ed elaborazione per l'analisi del RNA

Published: January 31, 2018
doi:

Summary

Lo scopo di questa carta è di presentare una procedura dettagliata per raccogliere diversi tessuti adiposi bianchi dai topi, trattare i campioni di grasso ed estrarre RNA.

Abstract

Rispetto ad altri tessuti, tessuto adiposo bianco ha un considerevolmente meno contenuto di RNA e proteine per applicazioni a valle come Real-Time PCR e Western Blot, poiché esso contiene principalmente i lipidi. Isolamento del RNA dai campioni di tessuto adiposo è impegnativo anche come passaggi aggiuntivi sono necessari per evitare questi lipidi. Qui, presentiamo una procedura per raccogliere tre tessuti adiposi bianchi anatomicamente diversi da topi, per elaborare questi campioni ed eseguire isolamento del RNA. Descriviamo ulteriormente la sintesi di cDNA e gene esperimenti di espressione mediante Real Time PCR. Il protocollo descritto dichiara permette la riduzione della contaminazione dell’animale capelli e sangue su cuscinetti adiposi, nonché la contaminazione incrociata tra diversi rilievi grassi durante la raccolta del tessuto. Esso è stato ottimizzato anche per garantire un’adeguata quantità e qualità del RNA estratto. Questo protocollo può essere ampiamente applicato a qualsiasi modello di topo dove campioni di tessuto adiposo sono necessari per gli esperimenti di routine come la PCR in tempo reale, ma non è inteso per l’isolamento da colture cellulari primarie adipocytes.

Introduction

L’obesità è un’epidemia mondiale che può portare a complicazioni quali 2 diabete di tipo1. Modelli animali obesi e geneticamente indotta da dieta sono frequentemente utilizzati per la ricerca in obesità e delle complicanze associate. Tradizionalmente, il tessuto adiposo bianco è conosciuto come un vano portaoggetti per l’energia in eccesso ed è prevalentemente composto da lipidi mentre il tessuto adiposo bruno converte l’energia in calore2,3. Tessuto adiposo è dinamico e sarà ampliata e ridursi a seconda di molti fattori come l’ingestione di cibo e attività fisica. Quindi, per determinare i fattori che contribuiscono a questi cambiamenti, tessuto adiposo adeguata raccolta e manipolazione sono necessari4.

Tra i tessuti adiposi bianchi, è generalmente accettato che i depositi di grasso sottocutanei e viscerali hanno proprietà diverse, ad esempio la localizzazione anatomica e funzionano2,5. Di conseguenza, per evitare risultati contraddittori o grande variabilità, attenzione deve essere presa per evitare la contaminazione incrociata tra questi diversi depositi di grasso quando si raccolgono i cuscinetti adiposi.

Inoltre, ci sono tre grandi sfide quando isolando RNA o proteine da tessuto adiposo di topi bianchi. In primo luogo, raccogliendo i cuscinetti adiposi in topi obesi non è un compito facile come il confine che separa i diversi depositi di grasso bianchi non è sempre chiaro, a differenza di altri organi come i reni e cuore6. In secondo luogo, a causa del contenuto elevato del lipido del tessuto adiposo, durante l’isolamento di RNA o proteine, uno strato di lipidi galleggia sulla parte superiore e impedisce l’accesso diretto al campione. In terzo luogo, in contrasto con il tessuto adiposo bruno o altri tessuti, tessuto adiposo bianco è considerevolmente minore contenuto di RNA e proteine e questo è di grande preoccupazione quando si utilizza giovani topi, topi alimentati una dieta normale (N) e topi che dovrebbero abbiano basse masse grasse (cioè KO modelli, trattamento con farmaci, esercitano di formazione, ecc.) 7 , 8.

Di conseguenza, scegliere il metodo appropriato per isolare il RNA dal tessuto adiposo è fondamentale. Metodi alternativi all’estrazione del fenolo/cloroformio sono kit commerciali. In genere si basano su una fase di estrazione del fenolo iniziale, seguita da purificazione RNA su una colonna9. Tuttavia, quei kit sono in genere più costosi e dare campioni di rendimento più basso, mentre la qualità di RNA potrebbe essere variabile ma sono molto meno tempo. Tuttavia, uno dei maggiori vantaggi di estrazione del fenolo soluzione/cloroformio descritto qui è la possibilità di isolamento del RNA, DNA e proteina da un singolo campione10. Dal momento che i rilievi grassi topi sono solitamente piccoli e dare piccole quantità di RNA e proteine (soprattutto in modelli murini magra), questi protocolli massimizzano i dati uno può uscire da un piccolo campione.

L’obiettivo di questa carta è di descrivere in dettaglio un metodo per garantire la raccolta di campioni adeguati da depositi di tessuto adiposo bianco tre topi come pure la quantità e la qualità di isolamento del RNA. RNA ottenuto seguendo questo protocollo consente di eseguire analisi di PCR in tempo reale. Questo protocollo non è destinato all’isolamento del RNA dai adipocytes primario coltivati.

Protocol

Cura dei topi utilizzati nelle procedure rispettate norme per la cura e l’uso di animali da esperimento fissato dal Consiglio canadese per la protezione degli animali. Tutte le procedure sono state approvate dal comitato di uso del CHUM Research Center e Università Animal Care. 1. l’autopsia e raccolta di tessuto adiposo da topi maschi Fare gruppi sperimentali secondo obiettivi di studio. In questo studio, i campioni sono stati raccolti da due gruppi di topi maschi su uno sfondo di …

Representative Results

Seguendo la procedura di autopsia, tre tessuti adiposi bianchi sono stati raccolti e appesantiti da due gruppi di topi (N e HF topi dieta-federazione). Come previsto, i topi sulla dieta HF avevano aumentato peso corporeo finale e aumento di peso rispetto ai littermates sulla dieta N (tabella 1). Queste osservazioni sono state accompagnate da più di un aumento di 2 volte del peso della PGF, PRF e SCF in topi obesi rispetto a quelli sulla dieta N. <p class="jove_conten…

Discussion

HF-dieta seguente nutrire, topi obesi sono stati trovati una maggiore corpo e tessuto adiposo bianco pesi rispetto ai topi alimentati con una dieta di N. RNA estratto usando fenolo soluzione dato i campioni con buona purezza. Leptina è un’adipochina prodotta principalmente da tessuto adiposo ed è conosciuta per correlare positivamente con massa grassa16. Come previsto, espressione di mRNA di leptina aumentata di topi obesi in concomitanza con la loro massa grassa.

Que…

Declarações

The authors have nothing to disclose.

Acknowledgements

Questo lavoro è stato supportato da diabete Canada.

Materials

1 mL seringes
1X TE solution (10 mM Tris-HCl and 1 mM EDTA•Na2. pH 8.0)
22 G needles
26 G needles
75% Ethanol
Block heater (dry bath)
Chloroform Sigma C2432-500mL
dATP    Thermo scientific R0141
dCTP   Thermo scientific R0151
dGTP   Thermo scientific R0161
DNase I (1 U/µl)  Thermo scientific EN0521
dTTP  Thermo scientific R0171
Faststart Universal SYBR green Master (Rox) Roche 4913922001
Faststart universal SYBR green master (Rox) fluorescent dye  Roche 4913914001
Filtered tips
Forceps  Instrumentarium HB275
Gauze
Hammer
High fat rodent diet Bio-Serv, Frenchtown, NJ F3282
Isopropanol  Laboratoire MAT IH-0101
Leptin forward PCR primer (5’-GGGCTTCACCCCATTCTGA-3’) 10 uM
Leptin reverse PCR primer (5’-GGCTATCTGCAGCACATTTTG-3’) 10 uM
Liquid nitrogen
Maxima Reverse Transcriptase (enzyme and 5x buffer) Thermo scientific EP0742
Nanopure water (referred as ultrapure water)
Nitrile examination gloves
Nitrile gloves
Normal rodent diet Harlan Laboratories, Madison, WI Harlan 2018
P1000 pipetman
P2 pipetman
P20 pipetman
P200 pipetman
Phenol solution (TRIzol)  Ambion Life Technologies 15598018
Pre-identified aluminium foil
Quartz spectrophotometer cuvette
Rack for PCR tube strips
Racks for RT-PCR tube strips
Random hexamers  Invitrogen 58875
Real-time PCR Rotor Gene system  Corbett research RG-3000 Rotor-Gene thermal cycler
Refrigerated bench-top centrifuge
RiboLock RNase Inhibitor  Thermo scientific EO0381
RNase-free 1.5 mL eppendorf tubes
RNase-free 1.5 mL screw cap tubes
RNase-free PCR tube strips (0.2 mL) and caps
RNase-free water  Hyclone SH30538.02
RT-PCR machine Qiagen Rotor-Gene Corbett 3000
RT-PCR tube strips (0.1 mL) and caps
S16 forward PCR primer (5’-ATCTCAAAGGCCCTGGTAGC-3’) 10 uM
S16 reverse PCR primer (5’ ACAAAGGTAAACCCCGATCG-3’) 10 uM
Spectrophotometer Biochrom Ultrospec 3100 pro
Stainless steel mortar and pestle
Surgical pads Home made a foam board wrapped in a disposable absorbent underpad
Surgical scissors  Intrumentarium 130.450.11
Thermal cycler
Thermal cycler  Biometra Thermocycler
Vortex mixer
Weighing spatula

Referências

  1. Guh, D. P., et al. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC. Public Health. 9, 88 (2009).
  2. Wronska, A., Kmiec, Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol (Oxf). 205 (2), 194-208 (2012).
  3. Cannon, B., Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol Rev. 84 (1), 277-359 (2004).
  4. Holland, N. T., Smith, M. T., Eskenazi, B., Bastaki, M. Biological sample collection and processing for molecular epidemiological studies. Mutat Res. 543 (3), 217-234 (2003).
  5. Ibrahim, M. M. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 11 (1), 11-18 (2010).
  6. Mann, A., Thompson, A., Robbins, N., Blomkalns, A. L. Localization, identification, and excision of murine adipose depots. J Vis Exp. (94), (2014).
  7. Hemmrich, K., Denecke, B., Paul, N. E., Hoffmeister, D., Pallua, N. RNA Isolation from Adipose Tissue: An Optimized Procedure for High RNA Yield and Integrity. Laboratory Medicine. 41 (2), 104-106 (2010).
  8. Cirera, S. Highly efficient method for isolation of total RNA from adipose tissue. BMC Res Notes. 6, 472 (2013).
  9. Tan, S. C., Yiap, B. C. DNA, RNA, and protein extraction: the past and the present. J Biomed Biotechnol. 2009, 574398 (2009).
  10. Sellin Jeffries, M. K., Kiss, A. J., Smith, A. W., Oris, J. T. A comparison of commercially-available automated and manual extraction kits for the isolation of total RNA from small tissue samples. BMC Biotechnol. 14, 94 (2014).
  11. Tan, P., et al. Impact of the prorenin/renin receptor on the development of obesity and associated cardiometabolic risk factors. Obesity (Silver. Spring). 22 (10), 2201-2209 (2014).
  12. Taylor, S., Wakem, M., Dijkman, G., Alsarraj, M., Nguyen, M. A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines. Methods. 50 (4), 1-5 (2010).
  13. Aranda, P. S., LaJoie, D. M., Jorcyk, C. L. Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis. 33 (2), 366-369 (2012).
  14. Mercure, C., Prescott, G., Lacombe, M. J., Silversides, D. W., Reudelhuber, T. L. Chronic increases in circulating prorenin are not associated with renal or cardiac pathologies. Hypertension. 53 (6), 1062-1069 (2009).
  15. Dusaulcy, R., et al. Adipose-specific disruption of autotaxin enhances nutritional fattening and reduces plasma lysophosphatidic acid. J. Lipid Res. 52 (6), 1247-1255 (2011).
  16. Nakamura, K., Fuster, J. J., Walsh, K. Adipokines: a link between obesity and cardiovascular disease. J Cardiol. 63 (4), 250-259 (2014).
  17. Taylor, S. C., Mrkusich, E. M. The state of RT-quantitative PCR: firsthand observations of implementation of minimum information for the publication of quantitative real-time PCR experiments (MIQE). J Mol Microbiol Biotechnol. 24 (1), 46-52 (2014).
  18. Hummon, A. B., Lim, S. R., Difilippantonio, M. J., Ried, T. Isolation and solubilization of proteins after TRIzol extraction of RNA and DNA from patient material following prolonged storage. Biotechniques. 42 (4), 467-470 (2007).
check_url/pt/57026?article_type=t

Play Video

Citar este artigo
Tan, P., Pepin, É., Lavoie, J. L. Mouse Adipose Tissue Collection and Processing for RNA Analysis. J. Vis. Exp. (131), e57026, doi:10.3791/57026 (2018).

View Video