Summary

"一站式" 近红外光谱对骨骼肌神经血管的耦合、氧化能力及微血管功能的作用

Published: February 20, 2018
doi:

Summary

在这里, 我们描述了一个简单的, 非侵入性的方法, 使用近红外光谱评估反应性充血, 神经血管耦合和骨骼肌氧化能力的单一诊所或实验室访问。

Abstract

运动是一种主要的血流动力学压力, 需要高度协调的神经血管反应, 以便将氧气输送与新陈代谢需求相匹配。反应性充血 (在短时间内组织缺血) 是心血管事件的独立预测因子, 为血管的健康和舒张能力提供了重要的洞察力。骨骼肌氧化能力在健康和疾病中同样重要, 因为它决定了 myocellular 过程的能量供应。在这里, 我们描述了一个简单的, 非侵入性的方法, 使用近红外光谱评估这些主要临床终点 (反应性充血, 神经血管耦合, 肌肉氧化能力) 在一个单一的诊所或实验室访问。不同于多普勒超声, 磁共振图像/光谱学, 或侵入导管的流量测量或肌肉活检, 我们的方法是较少的操作者依赖, 低成本, 完全没有侵入。我们实验室的代表性数据连同先前发表的文献中的摘要数据, 说明了每个端点的效用。一旦掌握了这种技术, 应用到临床人群将提供重要的机械洞察力的运动不耐受和心血管功能障碍。

Introduction

充血对短暂的组织缺血的反应已成为一种关键的非侵入性测量 (微) 血管功能。在导管动脉闭塞期间, 下游动脉扩张, 以抵消缺血性的侮辱。在阻断后, 血管阻力的减少导致充血, 其大小取决于一个人的能力来扩张下游微管。虽然反应性充血是心血管事件的一个强有力的独立预测因子1,2 , 因此一个临床重要的终点, 它的功能意义, 锻炼耐受性和生活质量是不太清楚。

事实上, 动态运动是一种主要的心血管压力, 需要高度协调的神经血管反应, 以便将氧气输送与新陈代谢需求相匹配。例如, 骨骼肌血流可以增加近100倍, 在单独的肌肉收缩3, 这将压倒心脏的抽水能力, 如果这样的血流动力学反应被推断为全身运动。因此, 为了避免严重的低血压, 交感神经 (即,收缩) 神经活动增加, 重新分配心脏输出远离非活动和内脏组织和对主动骨骼肌4。交感神经流出也被定向到运动骨骼肌5;然而, 局部代谢信号减弱收缩反应, 以确保足够的组织氧气输送6,7,8,9,10, 11. 总的来说, 这个过程被称为功能 sympatholysis12, 对运动过程中骨骼肌血流的正常调节是必不可少的。由于骨骼肌血流是有氧能力的关键决定因素–生命质量和心血管疾病发病率和死亡率的独立预测因子13-了解骨骼肌血流和组织氧的控制运动期间分娩具有重要的临床意义。

然而, 氧气的传递只是菲克方程的一半, 氧气的利用满足了等式的另一半。在氧利用的主要决定中, 线粒体氧化磷酸化对于在静止和运动期间为细胞过程提供足够的能量起着至关重要的作用。事实上, 肌肉氧化能力的损害可以限制功能能力和生活质量14,15,16。各种措施通常用于提供肌肉氧化能力指标, 包括侵入性肌肉活检和昂贵和耗时的磁共振光谱学 (夫人) 技术。

在这里, 我们提出了一种新的, 非侵入性的方法, 使用近红外光谱分析, 以评估这三个主要临床终点 (活性充血, sympatholysis 和肌肉氧化能力) 在一个单一的诊所或实验室访问。该方法的主要优点是三倍: 首先, 该技术易于携带, 成本相对较低, 易于执行。目前的多普勒超声检测反应性充血的方法是高度依赖于操作者-需要广泛的技能和培训-并需要复杂, 高成本, 数据采集硬件和后处理软件。此外, 这可能被引入到临床和/或大型临床试验, 为床边监测或测试的疗效。其次, 根据该方法, 该技术特别注重骨骼肌微血管, 提高了技术的整体特异性。其他方法使用多普勒超声聚焦在上游导管容器和推断变化下游, 这可能会减弱信号。第三, 这种技术是完全无侵入性的。骨骼肌氧化能力传统上是用侵袭性和痛苦的肌肉活检来评估的, 功能 sympatholysis 可以用动脉内注射 sympathomimetics 和 sympatholytics 来评估。这种方法完全避免了这些要求。

Protocol

本议定书遵循德克萨斯大学阿林顿机构审查委员会的指导方针, 符合《赫尔辛基宣言》最新版本规定的标准。因此, 在开始研究程序之前 (而且应该) 获得书面知情同意。 1. 仪器仪表 注: 以下仪器描述是基于我们实验室使用的近红外线 (近红外) 光谱仪和数据采集系统 (请参阅材料表)。因此, 指令包括这些设备的最佳功能所必需的步骤。这些步骤包括使?…

Representative Results

骨骼肌氧化能力 图 2说明了在近红外光谱衍生骨骼肌氧化能力评估期间有代表性的参与者反应。面板 a 显示了5分钟的动脉袖套闭塞协议, 手柄运动, 和间歇性动脉闭塞在运动恢复期间的组织饱和度剖面。小组 B 说明在恢复期间歇性动脉闭塞期间, 预期的组织饱和/再饱和度剖面。饱和的?…

Discussion

本文所述方法可在单个诊所或实验室访问中进行无创、无反应性充血、神经血管耦合和骨骼肌氧化能力的临床评价。

关键考虑事项

虽然近红外光谱是相对健壮和易于使用, 收集这些数据需要仔细放置的 optodes 直接在肌肉腹部, 固定到位, 以避免运动工件, 并覆盖在昏暗的房间里的黑色乙烯基板, 以避免外部光对近红外的干扰。此外, 获得?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了德克萨斯大学阿灵顿跨学科研究项目补助金的支持。

Materials

Dual-channel OxiplexTS Near-infrared spectroscopy machine Iss Medical 101
NIRS muscle sensor Iss Medical 201.2
E20 Rapid cuff inflation system Hokanson E20
AG101 Air Source Hokanson AG101
Smedley Handgrip dynometer (recording) Stolting 56380
Powerlab 16/35, 16 Channel Recorder ADInstruments PL3516
Human NIBP Set ADInstruments ML282-SM
Bio Amp ADInstruments FE132
Quad Bridge Amp ADInstruments FE224
Connex Spot Monitor Welch Allyn 71WX-B
Origin(Pro) graphing software OrignPro Pro
Lower body negative pressure chamber Physiology Research Instruments standard unit

Referências

  1. Huang, A. L., et al. Predictive value of reactive hyperemia for cardiovascular events in patients with peripheral arterial disease undergoing vascular surgery. Arterioscler Thromb Vasc Biol. 27 (10), 2113-2119 (2007).
  2. Suryapranata, H., et al. Predictive value of reactive hyperemic response on reperfusion on recovery of regional myocardial function after coronary angioplasty in acute myocardial infarction. Circulation. 89 (3), 1109-1117 (1994).
  3. Richardson, R. S., et al. High Muscle Blood-Flow in Man – Is Maximal O2 Extraction Compromised. J of Appl Physiol. 75 (4), 1911-1916 (1993).
  4. Clifford, P. S., Hellsten, Y. Vasodilatory mechanisms in contracting skeletal muscle. J Appl Physiol. 97 (1), 393-403 (2004).
  5. Hansen, J., Thomas, G. D., Jacobsen, T. N., Victor, R. G. Muscle metaboreflex triggers parallel sympathetic activation in exercising and resting human skeletal muscle. Am J Physiol. 266 (6 Pt 2), H2508-H2514 (1994).
  6. Thomas, G. D., Victor, R. G. Nitric oxide mediates contraction-induced attenuation of sympathetic vasoconstriction in rat skeletal muscle. J Physiol. 506 (Pt 3), 817-826 (1998).
  7. Hansen, J., Thomas, G. D., Harris, S. A., Parsons, W. J., Victor, R. G. Differential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle. J Clin Invest. 98 (2), 584-596 (1996).
  8. Rosenmeier, J. B., Fritzlar, S. J., Dinenno, F. A., Joyner, M. J. Exogenous NO administration and alpha-adrenergic vasoconstriction in human limbs. J Appl Physiol. 95 (6), 2370-2374 (2003).
  9. Fadel, P. J., Keller, D. M., Watanabe, H., Raven, P. B., Thomas, G. D. Noninvasive assessment of sympathetic vasoconstriction in human and rodent skeletal muscle using near-infrared spectroscopy and Doppler ultrasound. J Appl Physiol. 96 (4), 1323-1330 (2004).
  10. Nelson, M. D., et al. PDE5 inhibition alleviates functional muscle ischemia in boys with Duchenne muscular dystrophy. Neurology. 82 (23), 2085-2091 (2014).
  11. Nelson, M. D., et al. Sodium nitrate alleviates functional muscle ischaemia in patients with Becker muscular dystrophy. J Physiol. 593 (23), 5183-5200 (2015).
  12. Remensnyder, J. P., Mitchell, J. H., Sarnoff, S. J. Functional sympatholysis during muscular activity. Observations on influence of carotid sinus on oxygen uptake. Circ Res. 11, 370-380 (1962).
  13. Kodama, S., et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA. 301 (19), 2024-2035 (2009).
  14. Westerblad, H., Place, N., Yamada, T., Rassier, D. E. . Muscle Biophysics: From Molecules to Cells. , 279-296 (2010).
  15. Tyni-Lenné, R., Gordon, A., Jansson, E., Bermann, G., Sylvén, C. Skeletal muscle endurance training improves peripheral oxidative capacity, exercise tolerance, and health-related quality of life in women with chronic congestive heart failure secondary to either ischemic cardiomyopathy or idiopathic dilated cardiomyopathy. Am J of Cardiol. 80 (8), 1025-1029 (1997).
  16. Cabalzar, A. L., et al. Muscle function and quality of life in the Crohn’s disease. Fisioter Mov. 30, 337-345 (2017).
  17. Esch, B. T., Scott, J. M., Warburton, D. E. Construction of a lower body negative pressure chamber. Adv Physiol Educ. 31 (1), 76-81 (2007).
  18. Ryan, T. E., Southern, W. M., Reynolds, M. A., McCully, K. K. A cross-validation of near-infrared spectroscopy measurements of skeletal muscle oxidative capacity with phosphorus magnetic resonance spectroscopy. J Appl Physiol. 115 (12), 1757-1766 (2013).
  19. Ryan, T. E., Brophy, P., Lin, C. T., Hickner, R. C., Neufer, P. D. Assessment of in vivo skeletal muscle mitochondrial respiratory capacity in humans by near-infrared spectroscopy: a comparison with in situ measurements. J Physiol. 592 (15), 3231-3241 (2014).
  20. Adami, A., Rossiter, H. B. Principles, insights and potential pitfalls of the non-invasive determination of muscle oxidative capacity by near-infrared spectroscopy. J Appl Physiol. , (2017).
  21. Corretti, M. C., et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery – A report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 39 (2), 257-265 (2002).
  22. Thijssen, D. H., et al. Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol. 300 (1), H2-H12 (2011).
  23. Green, D. J., Jones, H., Thijssen, D., Cable, N. T., Atkinson, G. Flow-mediated dilation and cardiovascular event prediction: does nitric oxide matter?. Hypertension. 57 (3), 363-369 (2011).
  24. Southern, W. M., Ryan, T. E., Reynolds, M. A., McCully, K. Reproducibility of near-infrared spectroscopy measurements of oxidative function and postexercise recovery kinetics in the medial gastrocnemius muscle. Appl Physiol Nutr Metab. 39 (5), 521-529 (2014).
  25. Ryan, T. E., Erickson, M. L., Brizendine, J. T., Young, H. J., McCully, K. K. Noninvasive evaluation of skeletal muscle mitochondrial capacity with near-infrared spectroscopy: correcting for blood volume changes. J Appl Physiol. 113 (2), 175-183 (2012).
  26. Ryan, T. E., et al. Skeletal muscle oxidative capacity in amyotrophic lateral sclerosis. Muscle Nerve. 50 (5), 767-774 (2014).
  27. Mayeur, C., Campard, S., Richard, C., Teboul, J. L. Comparison of four different vascular occlusion tests for assessing reactive hyperemia using near-infrared spectroscopy. Crit Care Med. 39 (4), 695-701 (2011).
  28. McLay, K. M., et al. Vascular responsiveness determined by near-infrared spectroscopy measures of oxygen saturation. Exp Physiol. 101 (1), 34-40 (2016).
  29. McLay, K. M., Nederveen, J. P., Pogliaghi, S., Paterson, D. H., Murias, J. M. Repeatability of vascular responsiveness measures derived from near-infrared spectroscopy. Physiol Rep. 4 (9), (2016).
  30. Ryan, T. E., Southern, W. M., Brizendine, J. T., McCully, K. K. Activity-induced changes in skeletal muscle metabolism measured with optical spectroscopy. Med Sci Sports Exerc. 45 (12), 2346-2352 (2013).
  31. Southern, W. M., et al. Reduced skeletal muscle oxidative capacity and impaired training adaptations in heart failure. Physiol Rep. 3 (4), (2015).
  32. Ryan, T. E., Brizendine, J. T., McCully, K. K. A comparison of exercise type and intensity on the noninvasive assessment of skeletal muscle mitochondrial function using near-infrared spectroscopy. J Appl Physiol. 114 (2), 230-237 (2013).
  33. Adami, A., Cao, R., Porszasz, J., Casaburi, R., Rossiter, H. B. Reproducibility of NIRS assessment of muscle oxidative capacity in smokers with and without COPD. Respir Physiol Neurobiol. 235, 18-26 (2017).
  34. Lacroix, S., et al. Reproducibility of near-infrared spectroscopy parameters measured during brachial artery occlusion and reactive hyperemia in healthy men. J Biomed Opt. 17 (7), 077010 (2012).
  35. Bopp, C. M., Townsend, D. K., Warren, S., Barstow, T. J. Relationship between brachial artery blood flow and total [hemoglobin+myoglobin] during post-occlusive reactive hyperemia. Microvasc Res. 91, 37-43 (2014).
  36. Willingham, T. B., Southern, W. M., McCully, K. K. Measuring reactive hyperemia in the lower limb using near-infrared spectroscopy. J Biomed Opt. 21 (9), 091302 (2016).
  37. Kragelj, R., Jarm, T., Erjavec, T., Presern-Strukelj, M., Miklavcic, D. Parameters of postocclusive reactive hyperemia measured by near infrared spectroscopy in patients with peripheral vascular disease and in healthy volunteers. Ann Biomed Eng. 29 (4), 311-320 (2001).
  38. Gurley, K., Shang, Y., Yu, G. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle. J Biomed Opt. 17 (7), 075010 (2012).
check_url/pt/57317?article_type=t

Play Video

Citar este artigo
Rosenberry, R., Chung, S., Nelson, M. D. Skeletal Muscle Neurovascular Coupling, Oxidative Capacity, and Microvascular Function with ‘One Stop Shop’ Near-infrared Spectroscopy. J. Vis. Exp. (132), e57317, doi:10.3791/57317 (2018).

View Video