Summary

A Video Surveillance System to Monitor Breeding Colonies of Common Terns (Sterna Hirundo)

Published: July 22, 2018
doi:

Summary

This paper describes a protocol that uses a remote video monitoring surveillance system to continuously monitor breeding colonies of ground-nesting waterbirds. The system includes five cameras monitoring individual nests and one camera monitoring the colony as a whole, and is powered by car batteries that are recharged via solar panels.

Abstract

Many waterbird populations have faced declines over the last century, including the common tern (Sterna hirundo), a waterbird species with a widespread breeding distribution, that has been recently listed as endangered in some habitats of its range. Waterbird monitoring programs exist to track populations through time; however, some of the more intensive approaches require entering colonies and can be disruptive to nesting populations. This paper describes a protocol that utilizes a minimally invasive surveillance system to continuously monitor common tern nesting behavior in typical ground-nesting colonies. The video monitoring system utilizes wireless cameras focused on individual nests as well as over the colony as a whole, and allows for observation without entering the colony. The video system is powered with several 12 V car batteries that are continuously recharged using solar panels. Footage is recorded using a digital video recorder (DVR) connected to a hard drive, which can be replaced when full. The DVR may be placed outside of the colony to reduce disturbance. In this study, 3,624 h of footage recorded over 63 days in weather conditions ranging from 12.8 °C to 35.0 °C produced 3,006 h (83%) of usable behavioral data. The types of data retrieved from the recorded video can vary; we used it to detect external disturbances and measure nesting behavior during incubation. Although the protocol detailed here was designed for ground-nesting waterbirds, the principal system could easily be modified to accommodate alternative scenarios, such as colonial arboreal nesting species, making it widely applicable to a variety of research needs.

Introduction

Common terns (Sterna hirundo, hereafter COTE), a waterbird species with a widespread breeding distribution, have become a flagship example of the need for conservation and monitoring programs1. Once harvested to near extirpation for the millinery trade, federal legislation in the 1900s enabled populations to rebound. However, declining population trends in the Chesapeake Bay have prompted increased concern over COTE, in addition to many other waterbirds2. COTE are currently listed as a Maryland state endangered species due to reductions in both breeding numbers and active breeding colonies3. Stressors including flooding and washouts of breeding sites4,5,6, anthropogenic disturbance, competition/predation with gulls7,8, and predation by great horned owls (Bubo virginianus) and red foxes (Vulpes vulpes)9,10, are believed to have contributed to current population declines; however, the relative contributions of individual stressors are not known. Understanding stressors associated with different stages of the breeding cycle, such as incubation, post-hatch, and fledging success are important but can be intensive and include frequent surveys that require entry into the nesting colony11. Such monitoring techniques can be disruptive to tern populations, and in some cases may result in nest abandonment and/or reductions in reproductive success12,13,14.

While the impact of researchers on common terns is well documented, intensive monitoring can impact a number of additional ground-nesting colonial species, such as short tailed shearwaters (Puffinus tenuirostris)15, common eiders (Somateria mollissima)16, black skimmers (Rynchops niger)17, and Fiordland crested penguins (Eudyptes pachyrhynchus)18. For instance, a study on short tailed shearwaters found that monitoring intensity had an inverse relationship on hatching success, and can exacerbate population declines. These examples illustrate the increasing need to reduce disturbance while maintaining comprehensive monitoring programs. With the video system outlined in this paper, we aimed to obtain information on nest attentiveness and observation of predators in a manner that would reduce the physical presence of humans within the colony.

Our study was located at the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island (38°46′01″N, 76°22′54″W, hereafter Poplar Island), one of the few known nesting sites for COTE in Maryland. Ongoing monitoring programs on Poplar Island have identified consistent nesting by COTE, albeit with variable levels of success depending on presence of avian or mammalian predators19,20. Due to these factors, Poplar Island was identified as an ideal location to conduct this study.

While the ability to monitor waterbird populations with video technology has clear benefits to the species under observation21,22, a number of technical considerations must be taken into account when implementing such an approach. For instance, video resolution must be sufficient to identify items of interest to the researcher, such as food items, nest markings, or colored leg bands for individual identification. Additionally, the physical components must be durable enough to withstand both weather events and wildlife interactions. Wireless security cameras were chosen due to their high definition picture quality, color display with wireless and infrared capabilities, outdoor durability, and overall cost effectiveness23.

The objective of this study was to design a video monitoring system that would allow for the remote observation of a ground-nesting colonial species while causing minimal disturbance to those individuals and the colony. This paper outlines the specific video system used to collect data.

Protocol

1. Pre-Field Preparation of the Video Monitoring System Note: This includes the steps necessary to prepare the solar panels, battery system, cameras and staking system for construction at the field site. To begin set-up of the solar panels and battery system, cut and solder 20 copper insulated 10 American wire gauge (AWG) wires (10 positive, 10 negative), attaching ring terminals when necessary. Cut six negative (black) and six positive (red) wires approximately 2 ft. l…

Representative Results

The implementation of this video monitoring protocol will result in continuous datasets of footage from five waterbird nests at close range and one set of footage of the entire colony from an elevated vantage point. A successful use of this system will minimize time where the footage is out of range or displaying a poor-quality image and will maximize time where the footage is of high quality (Figure 2; Figure 3). Cameras were in…

Discussion

Monitoring waterbirds can be disruptive, and investigator disturbance while monitoring waterbirds has been linked to nest abandonment and decreases in reproductive success12,13,14. The protocol presented here offers a minimally invasive monitoring approach that allows researchers to establish and document the nesting behavior of ground-nesting waterbirds through continuous video footage.

Because this …

Declarações

The authors have nothing to disclose.

Acknowledgements

All data reported in this manuscript were collected in accordance with protocol approved by the Patuxent Wildlife Research Center Animal Care and Use Committee. This project was funded by the Maryland Department of Natural Resources and supported by the USGS Ecosystems Mission Area.  Video production was funded by The Chesapeake Bay Trust and Friends of Patuxent. We would like to thank the U.S. Army Corps of Engineers, Maryland Environmental Service, and Maryland Department of Transportation Maryland Port Administration for general logistical support and allowing video filming on site. We would like to acknowledge Dr. Bill Bowerman and Dr. Daniel Gruner from the University of Maryland for their input into system design and implementation. We would also like to acknowledge Bill Schultz, Kaitlyn Reintsma and Katie DeVoss for their help in troubleshooting and in field set-up in summer 2017. Finally, we would to thank Michael Glow (internal review) and anonymous reviewers for their input. The use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Materials

Morningstar SS-20L-12V (2) Morningstar Corporation 3680192 Charge controller
Renogy 100 W 12V Panel (4) Renogy RNG-100D Solar panel
LOREX LW3211 (6) Lorex LW3211-2PK Wireless camera with receivers
Sawhorse (4) HDX SH106
LOREX DV7082 Lorex DV7082W 8ch 1080p HD DVR; Comes with computer mouse
12V dry cell Absorbent Glass Mat (AGM) car batteries (6) Optima DS46B24R
TCT LCD color monitor Kuman X0013XAI51 Mini display monitor
22 in. display monitor Dell S2218H For office
18 gallon plastic bin (2) Sterilite 1446 Plastic container
Black copper insulated 10 AWG wire Southwire 22973257 Black electrical wire
Red copper insulated 10 AWG wire Southwire 37113803 Red electrical wire
3/8 in. ring terminals Autocraft 85417
5/16 in. ring terminals AutoCraft 85445
Winged wire connectors (red) Commercial Electric 775304 Connector is large enough to accommodate 3 10AWG wires inside
12V male DC adapter (2) Avue 162537
Male DC 2.1 x 5.5 mm power plugs for CCTV (4) WinBook 231001
Four port DC power splitters, 1 female to 4 ClearView PWRSPIDER4
1.5 ft. wooden board (5) Home Depot 461443
5 ft. wooden board Vigoro RC 85N
1/4 in. x 2 in. eye bolt (8) Everbilt 816721
5/16 in. hex nuts (16) Everbilt 804886
5/16 in. washers (16) Everbilt 807220
SAE size 6 stainless steel clamps (8) Everbilt 670655E
60ft. BNC extension cables (6) WinBook 432377
2 ft. x 4 ft. wooden plywood Home Depot 1502104 Cut to 1 ft. x 2 ft.
5 ft. metal rebar (8) Weyerhaeuser 35616
Bungee cord (2) HDX 56128 For securing lid
15 ft. x 3/4 in. sticky back tape Velcro 239540
Duct tape Duck 392875
Permanent Marker Sharpie 35010
1/4 in. x 400 ft. white diamond braid nylon rope Everbilt 72716
Weatherproof electrical tape Scotch 6143-BA-10
Schumacher 6A 12V automatic battery charger/ Carquest battery charger 8A Schumacher/ Carquest SP6/ CQ-80CR Two possible car battery chargers
6 in. nails (14) Grip-Rite 60HGC
18 Volt 1/2 in. Drill-Driver Ryobi P208B Drill
25 watt standard duty soldering iron Weller SP25NKUS Soldering iron
Leaded rosin core solder Bernzomatic 354123 Solder
Wire cutter Stanley 84-199
Screwdriver Husky 146340142 Came from 14 piece set of Phillips and flathead drivers
15 in. aggressive tooth saw Home Depot 122SS159
Rubber mallet HDX 31030
Post driver Everbilt 901147EB

Referências

  1. Nisbet, I. C. T., Arnold, J. M., Oswald, S. A., Pyle, P., Patten, M. A., Rodewald, P. G. Common Tern (Sterna hirundo.). The Birds of North America. , (2017).
  2. Brinker, D. F., Mccann, J. M., Williams, B., Watts, B. D. Colonial-nesting seabirds in the Chesapeake Bay region: where have we been and where are we going?. Waterbirds. 30 (1), 93-104 (2007).
  3. Maryland Natural Heritage Program. . List of rare, threatened, and endangered animals of Maryland. , 21401 (2016).
  4. Palestis, B. G., Hines, J. E. Adult survival and breeding dispersal of common terns (Sterna hirundo) in a declining population. Waterbirds. 38 (3), 221-228 (2015).
  5. Buckley, F. G., Buckley, P. A. Microenvironmental determinants of survival in saltmarsh-nesting common terns. Colonial Waterbirds. 5, 39 (1982).
  6. Erwin, R. M., Brinker, D. F., Watts, B. D., Costanzo, G. R., Morton, D. D. Islands at bay: rising seas, eroding islands, and waterbird habitat loss in Chesapeake Bay (USA). Journal of Coastal Conservation. 15 (1), 51-60 (2010).
  7. Drury, W. H. Population changes in New England seabirds (Continued). Bird-Banding. 45 (1), 1 (1974).
  8. Anderson, J. G., Devlin, C. M. Restoration of a multi-species seabird colony. Biological Conservation. 90 (3), 175-181 (1999).
  9. Erwin, R. M., Miller, J., Reese, J. G. Poplar Island environmental restoration project: challenges in waterbird restoration on an island in Chesapeake Bay. Ecological Restoration. 25 (4), 256-262 (2007).
  10. Kress, S. W., et al. The status of tern populations in northeastern United States and adjacent Canada. Colonial Waterbirds. 6, 84-106 (1983).
  11. Carney, K. M., Sydeman, W. J. A review of human disturbance effects on nesting colonial waterbirds. Waterbirds. 22 (1), 68-79 (1999).
  12. Brubeck, M. V., Thompson, B. C., Slack, R. D. The effects of trapping, banding, and patagial tagging on the parental behavior of least terns in Texas. Colonial Waterbirds. 4, 54 (1981).
  13. Gochfeld, M. Differences in behavioral responses of young common terns and black skimmers to intrusion and handling. Colonial Waterbirds. 4, 47 (1981).
  14. Nisbet, I. C. T. Behavior of common and roseate terns after trapping. Colonial Waterbirds. 4, 44 (1981).
  15. Carey, M. J. Investigator disturbance reduces reproductive success in Short-tailed Shearwaters Puffinus tentuirostris. IBIS. 153 (2), 363-372 (2011).
  16. Stein, J. Absence from the nest due to human disturbance induces higher nest predation risk than natural recesses in Common Eiders Somateria mollissima. IBIS. 158 (2), 249-260 (2015).
  17. Safina, C., Burger, J. Effects of human disturbance on reproductive success in the black skimmer. The Condor. 85 (2), 164-171 (1983).
  18. Ellenburg, U., et al. Assessing the impact of nest searches on breeding birds- a case study on Fiordland creasted penguins (Eudyptes pachyrhynchus). New Zealand Journal of Ecology. 39 (2), 231-244 (2015).
  19. Erwin, M. R., Beck, R. A. Restoration of waterbird habitats in Chesapeake Bay: great expectations or sisyphus revisited?. Waterbirds. 30 (1), 163-176 (2007).
  20. Erwin, M. R. . Post phase I dike construction faunal component surveys of the Paul S. Sarbanes ecosystem restoration project at Poplar Island: the 2012 assessment of waterbird nesting. , (2012).
  21. Cox, W. A., Pruett, M. S., Benson, T. J., Chiavacci, S. J., Thompson, F. R., Ribic, C. A., Thompson, F. R., Pietz, P. J. Development of camera technology for monitoring nests. Video surveillance of nesting birds. , 185-198 (2012).
  22. Mckinnon, L., Bêty, J. Effect of camera monitoring on survival rates of High-Arctic shorebird nests. Journal of Field Ornithology. 80 (3), 280-288 (2009).
  23. . LW3211 series specs Available from: https://www.lorextechnology.com/downloads/wireless-security-cameras/LW3211-Series/LW3211_Series_Spec_R1.pdf (2017)
  24. Nisbet, I. C. T., Cohen, M. E. Asynchronous hatching in common and roseate terns, Sterna Hirundo and S. Dougallii. IBIS. 117 (3), 374-379 (2008).
  25. . 720P Wireless digital security camera LW3211 series quick start guide Available from: https://www.lorextechnology.com/downloads/wireless-security-cameras/LW3211-Series/LW3211_SERIES_QSG_EN_R1.pdf (2017)
check_url/pt/57928?article_type=t

Play Video

Citar este artigo
Wall, J. L., Marbán, P. R., Brinker, D. F., Sullivan, J. D., Zimnik, M., Murrow, J. L., McGowan, P. C., Callahan, C. R., Prosser, D. J. A Video Surveillance System to Monitor Breeding Colonies of Common Terns (Sterna Hirundo). J. Vis. Exp. (137), e57928, doi:10.3791/57928 (2018).

View Video