Summary

Visualizing the Interaction Between the Qdot-labeled Protein and Site-specifically Modified λ DNA at the Single Molecule Level

Published: July 17, 2018
doi:

Summary

Here, we present a protocol to study DNA-protein interactions by total internal reflection fluorescence microscopy (TIRFM) using a site-specifically modified λ DNA substrate and a Quantum-dot labeled protein.

Abstract

The fluorescence microscopy has made great contributions in dissecting the mechanisms of complex biological processes at the single molecule level. In single molecule assays for studying DNA-protein interactions, there are two important factors for consideration: the DNA substrate with enough length for easy observation and labeling a protein with a suitable fluorescent probe. 48.5 kb λ DNA is a good candidate for the DNA substrate. Quantum dots (Qdots), as a class of fluorescent probes, allow long-time observation (minutes to hours) and high-quality image acquisition. In this paper, we present a protocol to study DNA-protein interactions at the single-molecule level, which includes preparing a site-specifically modified λ DNA and labeling a target protein with streptavidin-coated Qdots. For a proof of concept, we choose ORC (origin recognition complex) in budding yeast as a protein of interest and visualize its interaction with an ARS (autonomously replicating sequence) using TIRFM. Compared with other fluorescent probes, Qdots have obvious advantages in single molecule studies due to its high stability against photobleaching, but it should be noted that this property limits its application in quantitative assays.

Introduction

Interactions between protein and DNA are essential to many complex biological processes, such as DNA replication, DNA repair, and transcription. Although conventional approaches have shed light on the properties of these processes, many key mechanisms are still unclear. Recently, with the rapidly developing single molecule techniques, some of the mechanisms have been addressed1,2,3.

The application of single-molecule fluorescence microscopy on visualizing protein-DNA interactions in real-time mainly depends on the development of fluorescence detection and fluorescent probes. For a single molecule study, it is important to label the protein of interest with a suitable fluorescent probe since fluorescence detection systems are mostly available commercially.

Fluorescent proteins are commonly used in molecular biology. However, the low fluorescent brightness and stability against photobleaching restrict its application in many single molecule assays. Quantum dots (Qdots) are tiny light-emitting nanoparticles4. Due to their unique optical properties, Qdots are 10 – 20 times brighter and several thousand times more stable than the widely used organic dyes5. Moreover, Qdots have a large Stokes shift (the difference between the position of excitation and emission peaks)5. Thus, Qdots can be used for long-time observation (minutes to hours) and acquisition of images with high signal-to-noise ratios, while they cannot be utilized in the quantitative assays.

To date, there are two approaches to label a target protein with Qdots site-specifically: labeling with the aid of Qdot-conjugated primary or secondary antibodies6,7,8; or labeling the target protein with Qdots directly, which is based on the strong interaction between biotin and streptavidin9,10,11,12,13. Streptavidin-coated Qdots are commercially available. In our recent study, site-specifically biotinylated proteins in budding yeast with high efficiency were purified by co-overexpression of BirA and Avi-tagged proteins in vivo10. By following and optimizing the single-molecule assays14,15,16,17, we observed the interactions between Qdot-labeled proteins and DNA at the single molecule level using TIRFM10.

Here, we choose the budding yeast origin recognition complex (ORC), which can specifically recognize and bind to the autonomously replicating sequence (ARS), as our protein of interest. The following protocol presents a step-by-step procedure of visualizing the interaction of Qdot-labeled ORC with ARS using TIRFM. The preparation of the site-specifically modified DNA substrate, the DNA biotinylation, the coverslip cleaning and functionalization, the flow-cell assembly, and the single-molecule imaging are described.

Protocol

1. Preparation of λ-ARS317 DNA substrate DNA substrate construction and packaging Digest native λ DNA using XhoI enzyme; amplify a 543 bp DNA fragment bearing ARS317 from the genomic DNA of budding yeast using primers containing 20 bp homologous sequences of upstream and downstream of XhoI enzyme site on lambda DNA. Add 100 ng of XhoI digested λ DNA and 10 ng of DNA fragment to 10 µL of homologous recombination reaction system, and incubate the reacti…

Representative Results

To visualize the interaction between Qdot-labeled ORC and the ARS, we first constructed the λ-ARS317 DNA substrate. A DNA fragment containing ARS317 was integrated into XhoI site (33.5 kb) of native λ DNA by homologous recombination (Figure 1A). The recombination product was packaged using extracts and the packaged phage particles were cultured on LB plates (Figure 1B). The positive phage plaque was screened by…

Discussion

Here, we present a protocol to observe the interaction between the Qdot-labeled protein and the site-specifically modified λ DNA using the TIRFM in a flow-cell. The necessary steps include site-specific modification of DNA substrate, DNA biotinylation, coverslip cleaning and functionalization, flow-cell preparation, and single-molecule imaging. There are two key points that should be noted. First, all the steps involved with λ DNA should be manipulated gently to decrease any possible damage, e.g., avoi…

Declarações

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Hasan Yardimci and Dr.Sevim Yardimci of the Francis Crick Institute for kind help in the single-molecule experiments, Dr. Daniel Duzdevich from Dr. Eric C. Greene's lab of Columbia University, Dr. Yujie Sun of Peking University and Dr. Chunlai Chen of Tsinghua University for useful discussion. This study was supported by the National Natural Science Foundation of China 31371264, 31401059, CAS Interdisciplinary Innovation Team and the Newton Advanced Fellowship (NA140085) from the Royal Society.

Materials

Lambda DNA New England Biolabs N3011 Store 25 μL aliquots at -20 ºC.
XhoI enzyme Thermo Fisher Scientific FD0694
Quick-fusion cloning kit Biotool B22611
MaxPlax Lambda
Packaging Extracts
Epicentre MP5110 Bacterial strain LE392MP
is included in this package.
MgSO4 Sinopharm Chemical Reagent Co.,Ltd 10013092 Any brand is acceptable.
Tris Amresco 0497-5KG
NaCl Beijing Chemical works N/A Any brand is acceptable.
MgCl2 Sinopharm Chemical Reagent Co.,Ltd 10012818
Chloroform Beijing Chemical works N/A Any brand is acceptable.
NZ-amine Amresco J853-250G
Casamino acids Sigma-Aldrich 22090-500G
PEG8000 Beyotime ST483
Magnetic stirring apparatus IKA KMO2 basic
15 mL Eppendorf tube Eppendorf 30122151 15 mL, sterile, bulk, 500pcs
Rnase SIGMA R4875-100MG
Dnase SIGMA D5319-500UG
Proteinase K Amresco 0706-100MG
Biotinylated primers Thermo Fisher Scientific N/A
T4 DNA ligase, T4 DNA Ligase, Reaction Buffer (10x) New England Biolabs M0202
Coverslip Thermo Fisher Scientific 22266882
Ethanol Sinopharm Chemical Reagent Co.,Ltd 10009259
Potassium hydroxide (KOH) Sigma-Aldrich 306568-100G
Acetone Thermo Fisher Scientific A949-4
H2SO4 Sinopharm Chemical Reagent Co.,Ltd 80120891 sulfuric acid
H2O2 Sinopharm Chemical Reagent Co.,Ltd 10011218 30% Hydrogen peroxide
Methanol Sigma-Aldrich 322415-2L
Acetic acid Sigma-Aldrich V900798
APTES Sigma-Aldrich A3648
mPEG
(methoxy-polyethylene glycol)
Lysan mPEG-SVA-5000
biotin-PEG
(biotin-polyethylene glycol)
Lysan Biotin-PEG-SVA-5000
NaHCO3 Sigma-Aldrich 31437-500G
Vacuum desiccator Tianjin Branch Billion Lung Experimental Equipment Co., Ltd. IPC250-1
Vacuum sealer MAGIC SEAL WP300
Diamond-tipped glass scribe ELECTRON MICROSCOPY SCIENCES 70036
Glass slide Sail Brand 7101
Inlet tubing SCI (Scientific Commodties INC.) BB31695-PE/2 inner diameter 0.38 mm; outer diameter 1.09 mm.
Outlet tubing SCI (Scientific Commodties INC.) BB31695-PE/4 inner diameter 0.76 mm; outer diameter 1.22 mm.
Double-sided tape Sigma-Aldrich GBL620001-1EA
Epoxy LEAFTOP 9005 five minutes epoxy
Streptavidin Sigma-Aldrich S4762
Fluorescence Microscope Olympus IX71
Infusion/withdrawal
programmable pump
Harvard apparatus 70-4504
532 nm laser Coherent Sapphire-532-50
640 nm laser Coherent OBIS-640-100
EMCCD Camera Andor DU-897E-CS0-BV
W-View Gemini Imaging
splitting optics
Hamamatsu photonics K.K. A12801-01
TIRF illumination system Olympus IX2-RFAEVA2
60×TIRF objective Olympus APON60XOTIRF
Quad-edge laser dichroic
beamsplitter
Semrock Di01-R405/488/
532/635-25×36
Quad-band bandpass filter Semrock FF01-446/510/
581/703-25
Dichroic beamsplitter Semrock FF649-Di01-25×36
Emission filter Chroma Technology Corp ET585/65m
Emission filter Chroma Technology Corp ET665lp
FocalCheck fluorescence, microscope test slide #1 Thermo Fisher Scientific F36909
SYTOX Orange Thermo Fisher Scientific S11368
Qdot705 Streptavidin Conjugate Thermo Fisher Scientific Q10163MP Store at 4 ºC, do not freeze.
ATP Amresco 0220-25G Prepare 200 mM ATP solution, using ddH2O, adjust pH to 7.0, and store 10 μL aliquots at -20 ºC.
DTT Amresco M109-5G Prepare 1 M solution using ddH2O, and store 10 μl aliquots at -20 ºC.

Referências

  1. Fu, Y. V., et al. Selective Bypass of a Lagging Strand Roadblock by the Eukaryotic Replicative DNA Helicase. Cell. 146 (6), 930-940 (2011).
  2. Qi, Z., et al. DNA sequence alignment by microhomology sampling during homologous recombination. Cell. 160 (5), 856-869 (2015).
  3. Chong, S., Chen, C., Ge, H., Xie, X. S. Mechanism of transcriptional bursting in bacteria. Cell. 158 (2), 314-326 (2014).
  4. Wegner, K. D., Hildebrandt, N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chemical Society Reviews. 44 (14), 4792-4834 (2015).
  5. Gao, X., et al. In vivo molecular and cellular imaging with quantum dots. Current opinion in biotechnology. 16 (1), 63-72 (2005).
  6. Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 507 (7490), 62 (2014).
  7. Lee, J. Y., Finkelstein, I. J., Arciszewska, L. K., Sherratt, D. J., Greene, E. C. Single-molecule imaging of FtsK translocation reveals mechanistic features of protein-protein collisions on DNA. Molecular cell. 54 (5), 832-843 (2014).
  8. Wang, H., Tessmer, I., Croteau, D. L., Erie, D. A., Van Houten, B. Functional characterization and atomic force microscopy of a DNA repair protein conjugated to a quantum dot. Nano letters. 8 (6), 1631-1637 (2008).
  9. Redding, S., et al. Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system. Cell. 163 (4), 854-865 (2015).
  10. Xue, H., et al. Utilizing Biotinylated Proteins Expressed in Yeast to Visualize DNA-Protein Interactions at the Single-Molecule Level. Frontiers in microbiology. 8, 2062 (2017).
  11. Duzdevich, D., et al. The dynamics of eukaryotic replication initiation: origin specificity, licensing, and firing at the single-molecule level. Molecular cell. 58 (3), 483-494 (2015).
  12. Hughes, C. D., et al. Real-time single-molecule imaging reveals a direct interaction between UvrC and UvrB on DNA tightropes. Nucleic acids research. 41 (9), 4901-4912 (2013).
  13. Kad, N. M., Wang, H., Kennedy, G. G., Warshaw, D. M., Van Houten, B. Collaborative dynamic DNA scanning by nucleotide excision repair proteins investigated by single-molecule imaging of quantum-dot-labeled proteins. Molecular cell. 37 (5), 702-713 (2010).
  14. Chandradoss, S. D., et al. Surface Passivation for Single-molecule Protein Studies. Jove-Journal of Visualized Experiments. (86), (2014).
  15. Chen, X. Q., Zhao, E. S., Fu, Y. V. Using single-molecule approach to visualize the nucleosome assembly in yeast nucleoplasmic extracts. Science Bulletin. 62 (6), 399-404 (2017).
  16. Yardimci, H., Loveland, A. B., van Oijen, A. M., Walter, J. C. Single-molecule analysis of DNA replication in Xenopus egg extracts. Methods. 57 (2), 179-186 (2012).
  17. Tanner, N. A., Loparo, J. J., van Oijen, A. M. Visualizing single-molecule DNA replication with fluorescence microscopy. Journal of visualized experiments: JoVE. (32), (2009).
  18. Lockett, T. J. A bacteriophage λ DNA purification procedure suitable for the analysis of DNA from either large or multiple small lysates. Analytical biochemistry. 185 (2), 230-234 (1990).
  19. Smith, E. A., Chen, W. How to prevent the loss of surface functionality derived from aminosilanes. Langmuir. 24 (21), 12405-12409 (2008).
  20. Kim, Y., Torre, A., Leal, A. A., Finkelstein, I. J. Efficient modification of λ-DNA substrates for single-molecule studies. Scientific reports. 7 (1), 2071 (2017).
check_url/pt/57967?article_type=t

Play Video

Citar este artigo
Xue, H., Zhan, Z., Zhang, K., Fu, Y. V. Visualizing the Interaction Between the Qdot-labeled Protein and Site-specifically Modified λ DNA at the Single Molecule Level. J. Vis. Exp. (137), e57967, doi:10.3791/57967 (2018).

View Video