Summary

Isolamento, propagazione e l'espressione della proteina del Prion durante il differenziamento di cellule staminali polpa dentaria umana

Published: March 18, 2019
doi:

Summary

Qui presentiamo un protocollo per isolamento umano Dental Pulp Stem Cells e propagazione al fine di valutare l’espressione della proteina del prion durante il processo di differenziamento neuronale.

Abstract

Questioni bioetiche relazionati alla manipolazione delle cellule staminali embrionali hanno ostacolato i progressi nel campo della ricerca medica. Per questo motivo, è molto importante ottenere cellule staminali adulte da diversi tessuti quali adiposo, cordone ombelicale, midollo osseo e del sangue. Tra le possibili fonti, polpa dentale è particolarmente interessante perché è facile da ottenere per quanto riguarda considerazioni bioetiche. Infatti, le cellule staminali dentarie polpa umana (hDPSCs) sono un tipo di cellule staminali adulte in grado di differenziare in cellule di un neurone-come e può essere ottenuta dal terzo molare di pazienti sani (età 13-19). In particolare, la polpa dentale è stato rimosso con un escavatore, tagliata a fette piccole, trattata con collagenasi IV e coltivata in un matraccio da. Per indurre il differenziamento neuronale, hDPSCs sono stati stimolati con EGF/bFGF per 2 settimane. Precedentemente, abbiamo dimostrato che durante il processo di differenziazione il contenuto cellulare prion proteina (PrPC) in hDPSCs aumentato. L’analisi citofluorimetrica ha mostrato un’espressione precoce di PrPC che aumentato dopo il processo di differenziamento neuronale. Ablazione di PrPC di siRNA PrP ha impedito il differenziamento neuronale indotta da EGF/bFGF. In questa carta, illustriamo come abbiamo migliorato l’isolamento, separazione e metodi di coltivazione in vitro di hDPSCs con diverse procedure di facile, più efficienti cloni a cellula sono stato ottenuto e su larga scala l’espansione delle cellule staminali mesenchimali (MSCs) è stato osservato. Indichiamo anche come hDPSCs, ottenuti con metodi dettagliati nel protocollo, sono un eccellente modello sperimentale per studiare il processo di differenziamento di cellule staminali mesenchimali e successivi processi cellulari e molecolari.

Introduction

Cellule staminali mesenchimali sono state isolate da diversi tessuti, compreso il midollo osseo, sangue del cordone ombelicale, polpa dentaria umana, tessuto adiposo e sangue1,2,3,4,5 , 6. come riportato da diversi autori, hDPSCs Visualizza plastica aderenza, una tipica morfologia di fibroblasto-come. Questi rappresentano una popolazione altamente eterogenea con cloni distinti e le differenze nella capacità proliferativa e differenziante7,8. hDPSCs express markers specifici per le cellule staminali mesenchimali (cioè CD44, CD90, CD73, CD105, STRO-1), esse sono negativi per alcuni marcatori ematopoietici (quali CD14 e CD19) e sono capaci di differenziazione in vitro di multilineage9, 10,11.

Diversi autori hanno dimostrato che queste cellule sono in grado di differenziarsi in cellule del neurone-come utilizzando protocolli diversi, che includono l’aggiunta di NGF, bFGF, EGF in combinazione con la specifica media e integratori7,12. Inoltre, molte proteine sono coinvolti durante il processo di differenziamento neuronale e, tra queste, parecchie carte mostrano un ruolo rilevante e significativa espressione della proteina prionica cellulare PrP (C), sia in cellule staminali embrionali ed adulte13, 14. PrPC rappresenta una molecola pleiotropica capace di svolgere diverse funzioni all’interno delle cellule come metabolismo del rame, apoptosi, e resistenza a ossidativo stress15,16,17 , 18 , 19 , 20 , 21 , 22.

Nel nostro precedente carta23, abbiamo studiato il ruolo della PrPC nel processo di differenziazione di un neurone di hDPSCs. Infatti, hDPSCs express precocemente PrPC e, dopo il differenziamento neuronale, è stato possibile osservare un aumento supplementare. Altri autori hanno supposto un ruolo possibile di PrPC nei processi di differenziamento delle cellule staminali. Infatti, PrPC spinge la differenziazione delle cellule staminali embrionali umane in neuroni, oligodendrociti e astrociti24. Lo scopo di questo studio era quello di sottolineare la metodologia per ottenere cellule staminali da polpa dentaria, il processo di differenziazione e il ruolo di PrPC durante il differenziamento neuronale.

Protocol

Terzi molari utilizzati nello studio sono stati asportati dai pazienti (13-19 anni) con senza precedenti di droga o alcol, tutte per non fumatori e con una adeguata igiene orale. Il giorno della spiegazione, presso il dipartimento di scienza odontoiatria e maxillo-facciale dell’Università “Sapienza” di Roma, il consenso informato è stato ottenuto da pazienti o i genitori. Il consenso informato è stato ottenuto basato su considerazioni etiche e approvazione del comitato etico. 1. dente ed estr…

Representative Results

Le procedure di isolamento e la separazione di hDPSCs da polpa dentaria, ottenuta dal terzo molare, sono processi complessi, in cui piccoli cambiamenti possono portare un risultato rovinoso. In questa carta, utilizziamo il protocollo di Arthur et al.. 12 con molti nuovi miglioramenti. Uno schema rappresentativo delle procedure è illustrato nella Figura 1. hDPSCs rap…

Discussion

In questo lavoro, ci siamo concentrati sulla metodologia per l’isolamento e la differenziazione di un neurone di hDPSCs; Inoltre, abbiamo valutato il ruolo di PrPC in questo processo. Esistono diversi metodi per isolare e differenziare hDPSCs nel neurone-come le cellule e passaggi critici durante il processo. hDPSCs sono in grado di differenziare in diversi lignaggi quali condroblasti, adipociti, osteoblasti e neuroni. Nella nostra carta, abbiamo studiato i meccanismi di differenziamento neuronale e la presenz…

Declarações

The authors have nothing to disclose.

Acknowledgements

Questo lavoro è stato supportato da “Fondazione Varrone” e Hub di Università di Rieti “Sabina Universitas” a Vincenzo Mattei.

Figura 5 (A, B) ristampato con il permesso dell’editore Taylor & Francis Ltd da: complesso multimolecolare di ruolo del Prion protein-EGFR durante il differenziamento neuronale della polpa dentale umane cellule staminali. Martellucci, S., Manganelli V., C. Santacroce, F. Santilli, L. Piccoli, M. Sorice, V. Mattei Prion. 2018 Mar 4. Taylor & Francis Ltd.

Materials

Amphotericin B solution Sigma-Aldrich A2942 It is use to supplement cell culture media, it is a polyene antifungal antibiotic from Streptomyce
Anti-B3tubulin Cell Signaling Technology  #4466 One of six B-tubulin isoform, it is expressed highly during fetal and postnatal development, remaining high in the peripheral nervous system
Anti-CD105  BD Biosciences 611314 Endoglin (CD105), a major glycoprotein of human vascular endothelium, is a type I integral membrane protein with a large extracellular region, a hydrophobic transmembrane region, and a short cytoplasmic tail
Anti-CD44 Millipore CBL154-20ul Positive cell markers antibodies directed against mesenchymal stem cells
Anti-CD73  Cell Signaling Technology  13160 CD73 is a 70 kDa glycosyl phosphatidylinositol-anchored, membrane-bound glycoprotein that catalyzes the hydrolysis of extracellular nucleoside monophosphates into bioactive nucleosides
Anti-CD90 Millipore CBL415-20ul Positive cell markers antibodies directed against mesenchymal stem cells
Anti-GAP43  Cell Signaling Technology  #8945 Is a nervous system specific, growth-associated protein in growth cones and areas of high plasticity
Anti-mouse PE  Abcam ab7003 Is an antibody used in in flow cytometry or FACS analysis
Anti-NFH  Cell Signaling Technology  #2836 Is an antibody that detects endogenous levels of total Neurofilament-H protein
Anti-PrP mAb EP1802Y  Abcam ab52604 Rabbit monoclonal [EP 1802Y] to Prion protein PrP
Anti-rabbit CY5  Abcam ab6564 Is an antibody used in in flow cytometry or FACS analysis
Anti-STRO 1 Millipore MAB4315-20ul Positive cell markers antibodies directed against mesenchymal stem cells
B27 Supp XF CTS Gibco by life technologies A14867-01 B-27  can be used to support induction of human neural stem cells (hNSCs) from pluripotent stem cells (PSCs), expansion of hNSCs, differentiation of hNSCs, and maintenance of mature differentiated neurons in culture
BD Accuri C6 flow cytometer  BD Biosciences AC6531180187 Flow cytometer equipped with a blue laser (488 nm) and a red laser (640 nm)
BD Accuri C6 Software  BD Biosciences Controls the BD Accuri C6 flow cytometer system in order to acquire data, generate statistics, and analyze results
bFGF PeproThec, DBA 100-18B basic Fibroblast Growth Factor 
Centrifuge CL30R Termo fisher Scientific 11210908 it is a device that is used for the separation of fluids,gas or liquid, based on density
CO2 Incubator 3541 Termo fisher Scientific 317527-185 it ensures optimal and reproducible growth conditions for cell cultures
Collagenase, type IV  Life Technologies 17104019 Collagenase is a protease that cleaves the bond between a neutral amino acid (X) and glycine in the sequence Pro-X-Glyc-Pro, which is found with high frequency in collagen
Disposable scalpel  Swann-Morton 501 It is use to cut tissues
DMEM-L Euroclone ECM0060L Dulbecco's Modified Eagle's Medium Low Glucose with L-Glutamine with Sodium Pyruvate
EGF PeproThec, DBA AF-100-15 Epidermal Growth Factor 
Fetal Bovine Serum Gibco by life technologies 10270-106 FBS is a popular media supplement because it provides a wide array of functions in cell culture. FBS delivers nutrients, growth and attachment factors and protects cells from oxidative damage and apoptosis by mechanisms that are difficult to reproduce in serum-free media (SFM) systems
Filtropur BT50 0.2,500ml Bottle top filter Sarstedt 831,823,101 it is a device that is used for filtration of solutions
Flexitube GeneSolution for PRNP Qiagen GS5621 4 siRNAs for Entrez gene 5621. Target sequence N.1 TAGAGATTTCATAGCTATTTA  N.2 CAGCAAATAACCATTGGTTAA  N.3. CTGAATCGTTTCATGTAAGAA  N.4  CAGTGACTATGAGGACCGTTA
Hank's solution 1x Gibco by life technologies 240200083 The essential function of Hanks′ Balanced Salt solution is to maintain pH as well as osmotic balance. It also provides water and essential inorganic ions to cells
HiPerFect Transfection Reagent  Qiagen 301705 HiPerFect Transfection Reagent is a unique blend of cationic and neutral lipids that enables effective siRNA uptake and efficient release of siRNA inside cells, resulting in high gene knockdown even when using low siRNA concentrations
Neurobasal A  Gibco by life technologies 10888022 Neurobasal-A Medium is a basal medium designed for long-term maintenance and maturation of pure post-natal and adult brain neurons 
Paraformaldehyde Sigma-Aldrich 30525-89-4 Paraformaldehyde has been used for fixing of cells and tissue sections during staining procedures
penicillin/streptomycin  Euroclone ECB3001D  It is use to supplement cell culture media to control bacterial contamination
Phosphate buffered saline  (PBS) Euroclone ECB4004LX10  PBS is a balanced salt solution used for the handling and culturing of mammalian cells. PBS is used to to irrigate, wash, and dilute mammalian cells. Phosphate buffering maintains the pH in the physiological range
TC-Platte 6 well, Cell+,F Sarstedt 833,920,300 It is a growth surface for adherent cells
Tissue culture flask T-25,Cell+,Vented Cap Sarstedt 833,910,302 Tissue culture flask T-25, polystyrene, Cell+ growth surface for sensitive adherent cells, e.g. primary cells, canted neck, ventilation cap, yellow, sterile, Pyrogen-free, non-cytotoxic, 10 pcs./bag
Triton X-100  Sigma-Aldrich 9002-93-1 Widely used non-ionic surfactant for recovery of membrane components under mild non-denaturing conditions
Trypsin-EDTA  Euroclone ECB3052D  Trypsin will cleave peptides on the C-terminal side of lysine and arginine amino acid residues. Trypsin is used to remove adherent cells from a culture surface
Tube Sarstedt 62,554,502 Tube 15ml, 120x17mm, PP
VBH 36 C2 Compact Steril ST-003009000 Offers totally protection for the enviroment and worker
ZEISS Axio Vert.A1 – Inverted Microscope Zeiss 3849000962 ZEISS Axio Vert.A1 provides a unique entry level price and can provide all contrasting techniques, including brightfield, phase contrast, PlasDIC, VAREL, improved Hoffman Modulation Contrast (iHMC), DIC and fluorescence. Incorporate LED illumination for gentle imaging for fluorescently-labeled cells. Axio Vert.A1 is ergonomically designed for routine work and compact enough to sit inside tissue culture hoods.

Referências

  1. Robey, P. G., Kuznetsov, S. A., Riminucci, M., Bianco, P. Bone marrow stromal cell assays: in vitro and in vivo. Methods in Molecular Biology. 1130, 279-293 (2014).
  2. Jiang, Y., et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 418, 1-49 (2002).
  3. Kern, S., Eichler, H., Stoeve, J., Kluter, H., Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 24, 1294-1301 (2006).
  4. Zannettino, A. C. W., et al. Multi-potential Human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. Journal of Cellular Physiology. 214, 413-421 (2008).
  5. Mattei, V., et al. Role of lipid rafts in neuronal differentiation of dental pulp-derived stem cells. Experimental Cell Research. 339, 231-240 (2015).
  6. Jansen, J., Hanks, S., Thompson, J. M., Dugan, M. J., Akard, L. P. Transplantation of hematopoietic stem cells from the peripheral blood. Journal of Cellular and Molecular Medicine. 9 (1), 37-50 (2005).
  7. Young, F. I., et al. Clonal heterogeneity in the neuronal and glial differentiation of dental pulp stem/progenitor cells. Stem Cells International. 2016, 1290561 (2016).
  8. Pisciotta, A., et al. Human dental pulp stem cells (hDPSCs): isolation, enrichment and comparative differentiation of two sub-populations. BMC Developmental Biology. 15, 14 (2015).
  9. Atari, M., et al. Dental pulp of the third molar: a new source of pluripotent-like stem cells. Journal of Cell Science. 125, 3343-3356 (2012).
  10. Koyama, N., Okubo, Y., Nakao, K., Bessho, K. Evaluation of pluripotency in human dental pulp cells. Journal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons. 67, 501-506 (2009).
  11. Gronthos, S., et al. Stem cell properties of human dental pulp stem cells. Journal of Dental Research. 81, 531-535 (2002).
  12. Arthur, A., Rychkov, G., Shi, S., Koblar, S. A., Gronthos, S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells. 7, 1787-1795 (2008).
  13. Lee, Y. J., Baskakov, I. V. The cellular form of the prion protein is involved in controlling cell cycle dynamics, self-renewal, and the fate of human embryonic stem cell differentiation. Journal of Neurochemistry. 124, 310-322 (2013).
  14. Steele, A. D., Emsley, J. G., Ozdinler, P. H., Lindquist, S., Macklis, J. D. Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proceedings of the National Academy of Sciences of the United States of America. 103, 3416-3421 (2006).
  15. Wulf, M. A., Senatore, A., Aguzzi, A. The biological function of the cellular prion protein: an update. BMC Biology. 15, 34 (2017).
  16. Mattei, V., et al. Recruitment of cellular prion protein to mitochondrial raft-like microdomains contributes to apoptosis execution. Molecular Biology of the Cell. 22, 4842-4853 (2011).
  17. Linden, R. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules. Frontiers in Molecular Neuroscience. 10, 77 (2017).
  18. Garofalo, T., et al. Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis. Apoptosis. , 621-634 (2015).
  19. Watt, N. T., et al. Reactive oxygen species-mediated beta-cleavage of the prion protein in the cellular response to oxidative stress. The Journal of Biological Chemistry. 280, 35914-35921 (2005).
  20. Mattei, V., et al. Morphine Withdrawal Modifies Prion Protein Expression in Rat Hippocampus. PLoS One. 12, 0169571 (2017).
  21. Hu, W., et al. Prion proteins: physiological functions and role in neurological disorders. Journal of the Neurological Sciences. 264, 1-8 (2008).
  22. Sorice, M., et al. Trafficking of PrPC to mitochondrial raft-like microdomains during cell apoptosis. Prion. 6, 354-358 (2012).
  23. Martellucci, S., et al. Role of Prion protein-EGFR multimolecular complex during neuronal differentiation of human dental pulp-derived stem cells. Prion. 12 (2), 117-126 (2018).
  24. Lee, Y. J., Baskokov, I. V. The cellular form of the prion protein guides the differentiation of human embryonic stem cell into neuron-, oligodendrocyte- and astrocyte-committed lineages. Prion. 8, 266-275 (2014).
  25. Huang, G. T., Sonoyama, W., Chen, J., Park, S. H. In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell and Tissue Research. 324, 225-236 (2006).
  26. Suchanek, J., et al. Dental pulp stem cells and their characterization. Biomedical papers of the Medical Faculty of the University Palacký. 153, 31-35 (2009).
  27. Bressan, E., et al. Donor age-related biological properties of human dental pulp stem cells change in nanostructured scaffolds. PLoS One. 7 (11), 49146 (2012).
check_url/pt/59282?article_type=t

Play Video

Citar este artigo
Martellucci, S., Santacroce, C., Manganelli, V., Santilli, F., Piccoli, L., Cassetta, M., Misasi, R., Sorice, M., Mattei, V. Isolation, Propagation, and Prion Protein Expression During Neuronal Differentiation of Human Dental Pulp Stem Cells. J. Vis. Exp. (145), e59282, doi:10.3791/59282 (2019).

View Video