Summary

通过相频生成振动光谱揭示聚合物和生物大分子的界面分子级结构

Published: August 13, 2019
doi:

Summary

综合利用,总频率生成(SFG)振动光谱有助于揭示聚合物和生物大分子界面发生的链构体顺序和二次结构变化。

Abstract

作为二阶非线性光学光谱,相和频率生成(SFG)振动光谱已广泛应用于研究各种表面和界面。这种非侵入性光学技术可以提供具有单层或亚单层灵敏度的局部分子级信息。我们在这里提供了如何选择性地检测大分子和生物大分子的埋藏界面的实验方法。并在此基础上讨论了丝纤维素的界面二级结构以及模型短链寡核苷酸双相周围的水结构。前者显示链条重叠或空间约束效应,后者显示保护功能,防止由水的性脊柱上部结构产生的Ca2+离子。

Introduction

总频率生成(SFG)振动光谱的发展可以追溯到沈等人30年前1、2年所做的工作。界面选择性和亚单层灵敏度的独特性使SFG振动光谱学受到物理学、化学、生物学和材料科学等领域大量研究人员的赞赏,3,4 , 5.目前,使用SFG正在研究与表面和界面相关的广泛科学问题,特别是与聚合物和生物大分子相关的复杂界面,如链结构和结构松弛。埋藏聚合物界面,蛋白质二级结构,和界面水结构9,10,11,12,13,14, 15,16,17,18,19,20,21,22,23 24,25,26.

对于聚合物表面和界面,通常通过自旋涂层制备薄膜样品,以获得所需的表面或界面。问题产生是由于信号干扰从两个接口的制备薄膜,这导致不便分析收集的SFG光谱27,28,29 。在大多数情况下,振动信号仅来自单个接口,无论是薄膜/基板还是薄膜/另一种介质,都是可取的。实际上,解决这个问题的方法很简单,即实验性地最大化理想界面的光场,并尽量减少另一个界面的光场。因此,菲涅尔系数或局部场系数需要通过薄膜模型计算,并结合实验结果3、9、10、11进行验证。 12,13,14,15,30

考虑到上述背景,可以研究一些聚合物和生物界面,以便从分子水平上了解基础科学。在以下,以三个界面问题为例:探测聚聚物(2-羟基乙二醇丙烯酸酯)表面和埋藏界面与基板9,在聚苯乙烯(PS)表面形成丝纤维素(SF)二级结构,水结构周围的模型短链寡核苷酸双工16,21,我们将展示SFG振动光谱如何帮助揭示与基础科学相关的界面分子级结构。

Protocol

1. SFG实验 使用商用皮秒 SFG 系统 (材料表),它基于 Nd:YAG 激光提供脉冲宽度为 ±20 ps 和 50 Hz 频率的基本 1064 nm 光束。 通过使用第二和第三谐波模块,将基本 1064 nm 光束转换为 532 nm 光束和 355 nm 光束。直接引导 532 nm 光束作为输入光束,并通过光学参数生成 (OPG)/光学参数放大 (OPA)生成其他输入中红外 (IR) 光束,覆盖频率范围从 1000 到 4000 厘米-1)差频生成 (…

Representative Results

在协议部分的菲涅尔系数部分,我们已经表明,从理论上讲,一次只选择性地检测一个接口是可行的。在这里,实验,我们确认这种方法基本上是正确的,如图5和图6所示。 图5显示了水侵入后埋藏的界面PHEMA结构,带有+150 nm PHEMA水凝胶膜,图6显示了水中表面结构与±430 nm PHEMA水凝胶膜。面板 A 和 B…

Discussion

为了从分子水平上研究结构信息,SFG 具有其固有的优势(即单层或亚单层灵敏度和界面选择性),可用于研究各种接口,如固体/固体、固体/液体、固体/气体、液体/气体、液体/液体接口。尽管设备维护和光学校准仍然耗时,但回报显著,因为可以在表面和接口上获得详细的分子级信息。

探测聚物(2-羟基乙二甲酸酯)溶液中的表面和埋藏界面:如上文所示,可以调整光场系数。我们?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究得到了国家基础研究重点发展计划(2017YFA0700500)和国家自然科学基金(21574020)的支持。中央高校基础研究基金,由江苏省高等学校重点学术项目开发项目和国家实验生物医学工程示范中心资助教育(东南大学)也受到高度赞赏。

Materials

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)  Avanti Polar Lipids, Inc. 850355P-1g
Anhydrous ethanol Sinopharm Chemical Reagent Co., Ltd 100092680 ≥99.7%
CaF2 prism Chengdu YaSi Optoelectronics Co., Ltd.
Calcium chloride anhydrous Sinopharm Chemical Reagent Co., Ltd 10005817 ≥96.0%
deuterated DPPC (d-DPPC) Avanti Polar Lipids, Inc. 860345P-100mg
Electromagnetic oven Zhejiang Supor Co., Ltd C21-SDHCB37
Langmuir-Blodgett (LB) trough KSV NIMA Co., Ltd. KN 2003
Lithium bromide anhydrous Sinopharm Chemical Reagent Co., Ltd 20056926
Milli-Q synthesis system Millipore Ultrapure water
Plasma cleaner Chengdu Mingheng Science&Technology Co., Ltd PDC-MG Oxygen plasma cleaning
Poly(2-hydroxyethyl methacrylate) (PHEMA) Sigma-Aldrich Co., LLC. 192066 MSDS Mw = 300 000
Polystyrene Sigma-Aldrich Co., LLC. 330345 MSDS Mw = 48 kDa and Mn = 47 kDa
Silk cocoons From Bombyx mori
Single complementary strand of oligonucleotide Nanjing Genscript Biotechnology Co., Ltd. H03596 5'-CGAAGGCTTCCAGCT-3'
Single strand of oligonucleotide Nanjing Genscript Biotechnology Co., Ltd. H04936  3¢-end modified by cholesterol-triethylene glycol(Chol-TEG) (5¢-GCTTCCGAAGGTCGA-3¢)
Sodium carbonate anhydrous Sinopharm Chemical Reagent Co., Ltd 10019260 ≥99.8%
Spin-coater Institute of Microelectronics of the Chinese Academy of Sciences KW-4A For the prepartion of ploymer films 
Step profiler Veeco DEKTAK 150 For the measurement of film thickness
Sum frequency generation (SFG) vibrational spectroscopy system EKSPLA A commercial picosecond SFG system

Referências

  1. Shen, Y. R. Optical Second Harmonic Generation at Interfaces. Annual Review of Physical Chemistry. 40, 327-350 (1989).
  2. Shen, Y. R. Surface properties probed by second-harmonic and sum-frequency generation. Nature. 337, 519-525 (1989).
  3. Lu, X., et al. Studying Polymer Surfaces and Interfaces with Sum Frequency Generation Vibrational Spectroscopy. Analytical Chemistry. 89 (1), 466-489 (2017).
  4. Chen, X., Clarke, M. L., Wang, J., Chen, Z. Sum Frequency Generation Vibrational Spectroscopy Studies on Molecular Conformation and Orientation of Biological Molecules at Interfaces. International Journal of Modern Physics B. 19 (4), 691-713 (2005).
  5. Eisenthal, K. B. Liquid Interfaces Probed by Second-Harmonic and Sum-Frequency Spectroscopy. Chemical Reviews. 96 (4), 1343-1360 (1996).
  6. Richmond, G. L. Molcular Bonding and Interactions at Aqueous Surfaces as Probed by Vibrational Sum Frequency Spectroscopy. Chemical Reviews. 102 (8), 2693-2724 (2002).
  7. Wang, H., Gan, W., Lu, R., Rao, Y., Wu, B. Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy(SFG-VS). International Reviews in Physical Chemistry. 24 (2), 191-256 (2007).
  8. Shultz, M. J., Schnitzer, C., Simonelli, D., Baldelli, S. Sum frequency generation spectroscopy of the aqueous interface: Ionic and soluble molecular solutions. International Reviews in Physical Chemistry. 19 (1), 123-153 (2010).
  9. Li, X., et al. Detecting Surface Hydration of Poly(2-hydroxyethyl methacrylate) in Solution in situ. Macromolecules. 49, 3116-3125 (2016).
  10. Li, X., Lu, X. Evolution of Irreversibly Absorbed Layer Promotes Dewetting of Polystyrene Film on Sapphire. Macromolecules. 51, 6653-6660 (2018).
  11. Lu, X., Spanninga, S. A., Kristalyn, C. B., Chen, Z. Surface Orientation of Phenyl Groups in Poly(sodium 4-styrenesulfonate) and in Poly(sodium 4-styrenesulfonate): Poly(3,4-ethylenedioxythiophene) Mixture Examined by Sum Frequency Generation Vibrational Spectroscopy. Langmuir. 26 (17), 14231-14235 (2010).
  12. Lu, X., Clarke, M. L., Li, D., Wang, X., Chen, Z. A Sum Frequency Generation Vibrational Study of the Interference Effect in Poly(n-butyl methacrylate) Thin Films Sandwiched between Silica and Water. Journal of Physical Chemistry C. 115, 13759-13767 (2011).
  13. Lu, X., et al. Directly Probing Molecular Ordering at the Buried Polymer/Metal Interface 2: Using P-Polarized Input Beams. Macromolecules. 45, 6087-6094 (2012).
  14. Lu, X., Myers, J. N., Chen, Z. Molecular Ordering of Phenyl Groups at the Buried Polystyrene/Metal Interface. Langmuir. 30, 9418-9422 (2014).
  15. Li, B., Lu, X., Ma, Y., Han, X., Chen, Z. Method to Probe Glass Transition Temperatures of Polymer Thin Films. ACS Macro Letters. 4, 548-551 (2015).
  16. Li, X., Deng, G., Ma, L., Lu, X. Interchain Overlap Affects Formation of Silk Fibroin Secondary Structure on Hydrophobic Polystyrene Surface Detected via Achiral/Chiral Sum Frequency Generation. Langmuir. 34, 9453-9459 (2018).
  17. Kai, S., Li, X., Li, B., Han, X., Lu, X. Calcium-dependent hydrolysis of supported planar lipids was triggered by honey bee venom phospholipase A2 with the right orientation at the interface. Physical Chemistry Chemical Physics. 20, 63-67 (2018).
  18. Wang, J., Buck, S., Chen, Z. Sum Frequency Generation Vibrational Spectroscopy Studies on Protein Adsorption. Journal of Physical Chemistry B. 106, 11666-11672 (2002).
  19. Wang, J., et al. Detection of Amide I Signals of Interfacial Proteins in Situ Using SFG. Journal of American Chemical Society. 125, 9914-9915 (2003).
  20. Nguyen, K. T., et al. Probing the Spontaneous Membrane Insertion of a Tall-Anchored Membrane Protein by Sum Frequency Generation Spectroscopy. Journal of American Chemistry Society. 132, 15112-15115 (2010).
  21. Li, X., Ma, L., Lu, X. Calcium Ions Affect Water Molecular Structures Surrounding an Oligonucleotide Duplex as Revealed by Sum Frequency Generation Vibrational Spectroscopy. Langmuir. , (2018).
  22. Sartenaer, Y., et al. Sum-frequency generation spectroscopy of DNA monolayers. Biosensors & Bioelectronics. 22, 2179-2183 (2007).
  23. Asanuma, H., Noguchi, H., Uosaki, K., Yu, H. Metal Cation-induced Deformation of DNA Self-Assembled Monolayers on Silicon: Vibrational Sum Frequency Generation Spectroscopy. Journal of American Chemistry Society. 130, 8016-8022 (2008).
  24. Howell, C., Schmidt, R., Kurz, V., Koelsch, P. Sum-frequency-generation spectroscopy of DNA films in air and aqueous environments. Biointerphases. 3 (3), FC47 (2008).
  25. Walter, S. R., Geiger, F. M. DNA on Stage: Showcasing Oligonucleotides at Surfaces and Interfaces with Second Harmonic and Vibrational Sum Frequency Generation. Journal of Physical Chemistry Letters. 1, 9-15 (2010).
  26. Li, Z., Weeraman, C., Azam, M. S., Osman, E., Gibbs-Davis, J. The thermal reorganization of DNA immobilized at the silica/buffer interface: a vibrational sum frequency generation investigation. Physical Chemistry Chemical Physics. 17, 12452-12457 (2015).
  27. Lambert, A. G., Neivandt, D. J., Briggs, A. M., Usadi, E. W., Davies, P. B. Interference Effects in Sum Frequency Spectra from Monolayers on Composite Dielectric/Metal Substrates. Journal of Physical Chemistry B. 106, 5461-5469 (2002).
  28. Tong, Y., et al. Interference effects in the sum frequency generation spectra of thin organic films. I. Theoretical modeling and simulation. Journal of Chemical Physics. 133, 034704 (2010).
  29. McGall, S. J., Davies, P. B., Neivandt, D. J. Interference Effects in Sum Frequency Vibrational Spectra of Thin Polymer Films: An Experimental and Modeling Investigation. Journal of Physical Chemistry B. 108, 16030-16039 (2004).
  30. Li, B., et al. Interfacial Fresnel Coefficients and Molecular Structures of Model Cell Membranes: From a Lipid Monolayer to a Lipid Bilayer. Journal of Physical Chemistry C. 118, 28631-28639 (2014).
  31. Zhou, J., Anim-Danso, E., Zhang, Y., Zhou, Y., Dhinojwala, A. Interfacial Water at Polyurethane-Sapphire Interface. Langmuir. 31 (45), 12401-12407 (2015).
  32. Gautam, K. S., et al. Molecular Structure of Polystyrene at Air/Polymer and Solid/Polymer Interfaces. Physical Review Letters. 85 (18), 3854-3857 (2000).
  33. Yan, E. Y., Fu, L., Wang, Z., Liu, W. Biological Macromolecules at Interfaces Probed by Chiral Vibrational Sum Frequency Generation Spectroscopy. Chemical Reviews. 114, 8471-8498 (2014).
  34. Belkin, M. A., Kulakov, T. A., Ernst, K. H., Yan, L., Shen, Y. R. Sum-Frequency Vibrational Spectroscopy on Chiral Liquids: A Novel Technique to Probe Molecular Chirality. Physical Review Letters. 85, 4474 (2000).
  35. Rockwood, D. N., et al. Materials fabrication from Bombyx mori silk fibroin. Nature Protocols. 6, 1612-1631 (2011).

Play Video

Citar este artigo
Li, X., Ma, L., Lu, X. Interfacial Molecular-level Structures of Polymers and Biomacromolecules Revealed via Sum Frequency Generation Vibrational Spectroscopy. J. Vis. Exp. (150), e59380, doi:10.3791/59380 (2019).

View Video