Summary

激发-扫描高光谱成像显微镜,以有效区分荧光信号

Published: August 22, 2019
doi:

Summary

光谱成像已成为在单个样品中识别和分离多个荧光信号的可靠解决方案,并可轻松区分感兴趣的信号和背景或自荧光。激励扫描高光谱成像通过减少必要的图像采集时间,同时提高信噪比,改进了该技术。

Abstract

几种技术依靠荧光信号的检测来识别或研究现象或阐明功能。在高光谱成像出现之前,这些荧光信号的分离被证明是很繁琐的,在高光谱成像中,荧光源可以彼此分离,也可以与背景信号和自荧光分离(只要了解它们的光谱签名)。然而,传统的发射扫描高光谱成像由于对激发光和发射光进行必要的滤波,其采集时间慢,信噪比低。此前已经表明,激发扫描高光谱成像减少了必要的采集时间,同时提高了采集数据的信号噪声比。该协议使用市售设备,描述了如何组装、校准和使用激发扫描高光谱成像显微镜系统,以分离单个样品中多个荧光源的信号。虽然该技术非常适用于细胞和组织的微小成像,但该技术对于利用荧光的任何类型的实验也很有用,在荧光中,激发波长可能发生变化,包括但不限于:化学成像、环境应用、眼部护理、食品科学、法医学、医学和矿物学。

Introduction

光谱成像可以以各种方式进行,并指几个术语1,2,3,4。一般来说,光谱成像是指在至少两个空间维度和一个光谱维度中获取的数据。多光谱和高光谱成像通常以波长波段数或光谱波段是否连续1来区分。对于此应用,高光谱数据被定义为通过连续波长带获得的光谱数据,其间距小于用于激发的每个带通滤波器的一半最大最大宽度 (FWHM) 的全宽度的一半(即 5 nm具有 14-20 nm 带宽的带通滤波器的中心波长间距)。数据波段的连续性质允许对数据集进行过采样,从而确保在采样光谱域时满足奈奎斯特标准。

高光谱成像是由美国宇航局在1970年代和1980年代与第一颗Landsat卫星5,6联合开发的。从多个连续的光谱波段收集数据,可以生成每个像素的辐射光谱。识别和定义单个组件的辐射光谱,不仅能够通过表面材料的特性光谱进行检测,而且还能够去除中间信号,例如信号因大气条件。1996年,Schrück等人使用五种不同的荧光管及其已知光谱的组合来区分标记的染色体,这一概念在1996年应用于生物系统。光谱卡约打字7.2000年,Tsurui等人对组织样品的荧光成像技术进行了详细阐述,使用7种荧光染料和奇异值分解,实现了每个像素的光谱分离,形成参考光谱的线性组合。库8.与遥感同类产品类似,每个已知荧光光的占位可以从高光谱图像中计算,因为每个荧光的光谱都有先验的信息。

高光谱成像还用于农业9、天文学10、生物医学11、化学成像12、环境应用13、眼保健14、食品科学15、法医科学16,17,医学科学18,矿物学19,和监测20。当前荧光显微镜高光谱成像系统的一个关键限制是,标准高光谱成像技术通过 1) 首先过滤激发光来控制样品激发,然后将窄带中的荧光信号分离出来。2) 进一步过滤发射光,将荧光发射分离成窄带,以后可以数学地分离21。过滤激发照明和发射的荧光可减少可用信号量,从而降低信噪比,并需要较长的采集时间。低信号和较长的采集时间限制了高光谱成像作为诊断工具的适用性。

已经开发出一种成像模式,利用高光谱成像,但增加可用的信号,从而减少必要的采集时间21,22。这种称为激发扫描高光谱成像的新模式通过改变激发波长和收集广泛发射的光范围来获取光谱图像数据。此前已经表明,与发射扫描技术21、22相比,这种技术使信噪比上升一个数量级。信噪比的增加主要是由于检测到的发射光的宽带通(±600 nm),而特异性是通过仅过滤激发光而不是荧光发射来提供的。这使得所有发射的光(每个激发波长)都能到达探测器21。此外,该技术还可用于区分自自荧光与外源标签。此外,由于可检测信号的增加,能够缩短采集时间,从而降低光漂白的危险,并允许以光谱视频成像可接受的采集速率进行光谱扫描。

该协议的目的是作为激发扫描高光谱成像显微镜的数据采集指南。此外,还包括有助于了解光路径和硬件的说明。还介绍了用于激发扫描高光谱成像显微镜的开源软件的实现。最后,提供了有关如何将系统校准到 NIST 可追溯标准、调整软件和硬件设置以获得准确结果以及将检测到的信号解为各个组件的贡献的说明。

Protocol

1. 设备设置 光源:选择具有高功率输出和高准直的宽带光谱光源(这些研究使用了300 W Xe弧灯)。 快门(可选):向光路径添加快门,以减少延时成像的光漂白。 可调滤波器系统:采用机械调谐组件和薄膜可调滤波器 (TFTF) 设置,以实现所需的波长可调激励范围(例如,360-485 nm)。 显微镜:使用倒置荧光显微镜,包括电动双色滤塔和控制器。 荧光滤芯:?…

Representative Results

该协议的几个重要步骤是必要的,以确保收集数据是准确和没有成像和光谱伪影。跳过这些步骤可能会导致数据看起来重要,但无法用任何其他光谱成像系统进行验证或复制,从而有效地否定了使用这些数据得出的任何结论。这些重要步骤中最主要的是适当的光谱输出校正(第 3 节)。校正系数补偿可调谐激发系统光谱输出中的波长相关变化。这是通过缩放具有高功率激?…

Discussion

激发扫描高光谱成像设置的最佳应用始于光路径的构造。特别是,光源、滤光片(可调和二色度)、滤波器切换方法和摄像机的选择决定了可用的光谱范围、可能的扫描速度、探测器灵敏度和空间采样。汞弧灯提供许多激发波长峰值,但不提供平坦的光谱输出,并且需要在输出峰值处显著减小信号,才能将光谱图像数据校正回 NIST 可追溯响应38。替代光源,如Xe弧灯和白光超连续…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者希望感谢NSF 1725937、NIH P01HL066299、NIH R01HL058506、NIH S10OD020149、NIH UL1 TR001417、NIH R01HL137030、AHA 18PRE34060163和亚伯拉罕·米切尔癌症研究基金的支持。

Materials

Airway Smooth Muscle Cells National Disease Research Interchange (NDRI) Isolated from human lung tissues obtained from NDRI Highly autofluorescent, calcium sensitive cells
Automated Shutter Thorlabs Inc. SHB1 Remote-controllable shutter to minimize photobleaching
Automated Stage Prior Scientific H177P1T4 Remote-controllable stage for automated multiple field of view or stitched image collection.
Automated Stage Controller (XY) Prior Scientific Proscan III (H31XYZE-US) For interfacing automated stage with computer and joystick
Buffer Made in-house Made in-house 145 mM NaCl, 4 mM KCl, 20 mM HEPES, 10 mM D-glucose, 1 mM MgCl2, and 1mM CaCl2, at pH 7.3
Cell Chamber ThermoFisher Scientific Attofluor Cell Chamber, A7816 Coverslip holder composed of surgical stainless steel and a rubber O-ring to seal in media and prevent sample and/or objective contamination
Excitation Filters Semrock Inc. TBP01-378/16 Center wavelength range (340-378 nm), Bandwidth (Minimum 16 nm, nominal FWHM 20 nm), Refractive index (1.88)
Semrock Inc. TBP01-402/16 Center wavelength range (360-400 nm), Bandwidth (Minimum 16 nm, nominal FWHM 20 nm), Refractive index (1.8)
Semrock Inc. TBP01-449/15 Center wavelength range (400-448.8 nm), Bandwidth (Minimum 15 nm, nominal FWHM 20 nm), Refractive index (1.8)
Semrock Inc. TBP01-501/15 Center wavelength range (448.8-501.5 nm), Bandwidth (Minimum 15 nm, nominal FWHM 20 nm), Refractive index (1.84)
Semrock Inc. TBP01-561/14 Center wavelength range (501.5-561 nm), Bandwidth (Minimum 14 nm, nominal FWHM 20 nm), Refractive index (1.83)
Fluorescence Filter Cube Dichroic Beamsplitter Semrock Inc. FF495-Di03 Separates excitation and emission light at 495 nm (>98% reflection between 350-488 nm, >93% transmission between 502-950 nm), Filter effective index (1.78)
Fluorescence Filter Cube Longpass Filter Semrock Inc. FF01 496/LP-25 Allows passage of light longer than 496 nm ( >93% average transmission between 503.2-1100 nm), Refractive index (1.86)
GCaMP Probe Addgene G-CaMP3; Plasmid #22692 A single-wavelength GCaMP2-based genetically encoded calcium indicator
Integrating Sphere Ocean Optics FOIS-1 Used for accurate measurement of wide-angle illumination
Inverted Fluorescence Microscope Nikon Instruments TE2000 Inverted microscopes allow direct excitation of sample without the need to penetrate layers of media and/or tissue.
Mitotracker Green FM ThermoFisher Scientific M7514 Labels mitochondria
NIST-Traceable Calibration Lamp Ocean Optics LS-1-CAL-INT A lamp with a known spectrum for use as a standard
NIST-Traceable Fluorescein ThermoFisher Scientific F36915 For verifying appropriate spectral response of the system
NucBlue ThermoFisher Scientific R37605 Labels cell nuclei
Objective (10X) Nikon Instruments Plan Apo λ 10X/0.45 ∞/0.17 MRD00105 Useful for large fields of view
Objective (20X) Nikon Instruments Plan Apo λ 20X/0.75 ∞/0.17 MRD00205 Most often used for tissue samples
Objective (60X) Nikon Instruments Plan Apo VC 60X/1.2 WI ∞/0.15-0.18 WD 0.27 Most often used for cell samples
sCMOS Camera Photometrics Prime 95B (Rev A8-062802018) For acquiring high-sensitivity digital images
Spectrometer Ocean Optics QE65000 Used to measure spectral output of excitation-scanning spectral system
Tunable Filter Changer Sutter Instrument Lambda VF-5 Motorized unit for automated excitation filter tuning/switching
Xenon Arc Lamp Sunoptic Technologies Titan 300HP Lightsource Light source with relatively uniform spectral output

Referências

  1. Hagen, N. A., Kudenov, M. W. Review of snapshot spectral imaging technologies. Optical Engineering. 52 (9), 90901 (2013).
  2. Li, Q., He, X., Wang, Y., Liu, H., Xu, D., Guo, F. Review of spectral imaging technology in biomedical engineering: achievements and challenges. Journal of Biomedical Optics. 18 (10), 100901 (2013).
  3. Lu, G., Fei, B. Medical hyperspectral imaging: a review. Journal of Biomedical Optics. 19 (1), 10901 (2014).
  4. Mehta, N., Shaik, S., Devireddy, R., Gartia, M. R. Single-Cell Analysis Using Hyperspectral Imaging Modalities. Journal of Biomechanical Engineering. 140 (2), 20802 (2018).
  5. Goetz, A. F. H. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sensing of Environment. 113, S5-S6 (2009).
  6. Goetz, A. F. Measuring the Earth from Above: 30 Years(and Counting) of Hyperspectral Imaging. Photonics Spectra. 45 (6), 42-47 (2011).
  7. Schröck, E. Multicolor spectral karyotyping of human chromosomes. Science. 273 (5274), 494-497 (1996).
  8. Tsurui, H. Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition. Journal of Histochemistry & Cytochemistry. 48 (5), 653-662 (2000).
  9. Lu, R., Chen, Y. R. Hyperspectral imaging for safety inspection of food and agricultural products. SPIE. 3544, 121-134 (1999).
  10. Hege, E. K., O’Connell, D., Johnson, W., Basty, S., Dereniak, E. L. Hyperspectral imaging for astronomy and space surviellance. SPIE. 5159, 380-392 (2004).
  11. Vo-Dinh, T. A hyperspectral imaging system for in vivo optical diagnostics. IEEE Engineering in Medicine and Biology Magazine. 23 (5), 40-49 (2004).
  12. Dorrepaal, R. M., Gowen, A. A. Identification of Magnesium Oxychloride Cement Biomaterial Heterogeneity using Raman Chemical Mapping and NIR Hyperspectral Chemical Imaging. Scientific Reports. 8 (1), 13034 (2018).
  13. Swayze, G. A. Using imaging spectroscopy to map acidic mine waste. Environmental Science & Technology. 34 (1), 47-54 (2000).
  14. Khoobehi, B., Beach, J. M., Kawano, H. Hyperspectral imaging for measurement of oxygen saturation in the optic nerve head. Investigative Ophthalmology & Visual Science. 45 (5), 1464-1472 (2004).
  15. Gowen, A., O’Donnell, C., Cullen, P., Downey, G., Frias, J. Hyperspectral imaging-an emerging process analytical tool for food quality and safety control. Trends in Food Science & Technology. 18 (12), 590-598 (2007).
  16. Edelman, G., van Leeuwen, T. G., Aalders, M. C. Hyperspectral imaging for the age estimation of blood stains at the crime scene. Forensic Science International. 223 (1), 72-77 (2012).
  17. Edelman, G., Gaston, E., Van Leeuwen, T., Cullen, P., Aalders, M. Hyperspectral imaging for non-contact analysis of forensic traces. Forensic Science International. 223 (1), 28-39 (2012).
  18. Markgraf, W., Feistel, P., Thiele, C., Malberg, H. Algorithms for mapping kidney tissue oxygenation during normothermic machine perfusion using hyperspectral imaging. Biomedical Engineering/Biomedizinische Technik. 63 (5), 557-566 (2018).
  19. Boubanga-Tombet, S. Thermal Infrared Hyperspectral Imaging for Mineralogy Mapping of a Mine Face. Remote sensing. 10 (10), 1518 (2018).
  20. Yuen, P. W., Richardson, M. An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition. The Imaging Science Journal. 58 (5), 241-253 (2010).
  21. Favreau, P. F. Excitation-scanning hyperspectral imaging microscope. Journal of Biomedical Optics. 19 (4), 046010-046010 (2014).
  22. Favreau, P. Thin-film tunable filters for hyperspectral fluorescence microscopy. Journal of biomedical optics. 19 (1), 011017-011017 (2014).
  23. Leavesley, S. J. Hyperspectral imaging microscopy for identification and quantitative analysis of fluorescently-labeled cells in highly autofluorescent tissue. Journal of Biophotonics. 5 (1), 67-84 (2012).
  24. Annamdevula, N. S. Spectral imaging of FRET-based sensors reveals sustained cAMP gradients in three spatial dimensions. Cytometry Part A. 93 (10), 1029-1038 (2018).
  25. Deshpande, D. A., Walseth, T. F., Panettieri, R. A., Kannan, M. S. CD38/cyclic ADP-ribose-mediated Ca2+ signaling contributes to airway smooth muscle hyper-responsiveness. The FASEB Journal. 17 (3), 452-454 (2003).
  26. Deshpande, D. A. Modulation of calcium signaling by interleukin-13 in human airway smooth muscle: role of CD38/cyclic adenosine diphosphate ribose pathway. American Journal of Respiratory Cell and Molecular Biology. 31 (1), 36-42 (2004).
  27. Guo, M. Cytokines regulate β-2-adrenergic receptor responsiveness in airway smooth muscle via multiple PKA-and EP2 receptor-dependent mechanisms. Bioquímica. 44 (42), 13771-13782 (2005).
  28. Mansfield, J. R., Gossage, K. W., Hoyt, C. C., Levenson, R. M. Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. Journal of Biomedical Optics. 10 (4), 41207 (2005).
  29. Mansfield, J. R., Hoyt, C., Levenson, R. M. Visualization of microscopy-based spectral imaging data from multi-label tissue sections. Current Protocols in Molecular Biology. 84 (1), 14-19 (2008).
  30. Bouchard, M. B. Recent advances in catheter-based optical coherence tomography (OCT) have provided the necessary resolution and acquisition speed for high-quality intravascular imaging. Complications associated with clearing blood from the vessel of a living patient have. Journal of Biomedical Optics. 12 (5), 51601 (2007).
  31. Mansfield, J. R. Distinguished photons: a review of in vivo spectral fluorescence imaging in small animals. Current Pharmaceutical Biotechnology. 11 (6), 628-638 (2010).
  32. Levenson, R. M., Mansfield, J. R. Multispectral imaging in biology and medicine: slices of life. Cytometry Part A. 69 (8), 748-758 (2006).
  33. Gammon, S. T., Leevy, W. M., Gross, S., Gokel, G. W., Piwnica-Worms, D. Spectral unmixing of multicolored bioluminescence emitted from heterogeneous biological sources. Analytical Chemistry. 78 (5), 1520-1527 (2006).
  34. . . Spectral Unmixing Plugins. , (2006).
  35. . . Spectral Unmixing of Bioluminescence Signals. , (2006).
  36. Keshava, N., Mustard, J. F. Spectral unmixing. IEEE Signal Processing Magazine. 19 (1), 44-57 (2002).
  37. Deal, J. Identifying molecular contributors to autofluorescence of neoplastic and normal colon sections using excitation-scanning hyperspectral imaging. Journal of Biomedical Optics. 23 (12), (2018).
  38. Microscopy Key, . Microscopy: Key Considerations for Nonlaser Light Sources | Features. BioPhotonics. , (2016).
  39. Chiu, L., Su, L., Reichelt, S., Amos, W. Use of a white light supercontinuum laser for confocal interference-reflection microscopy. Journal of Microscopy. 246 (2), 153-159 (2012).
  40. . . Choosing the best light source for your fluorescence experiment. , (2019).
  41. Beier, H. T., Ibey, B. L. Experimental comparison of the high-speed imaging performance of an EM-CCD and sCMOS camera in a dynamic live-cell imaging test case. PLoS ONE. 9 (1), e84614 (2014).
  42. Tutt, J. Comparison of EM-CCD and scientific CMOS based camera systems for high resolution X-ray imaging and tomography applications. Journal of Instrumentation. 9 (6), P06017 (2014).
  43. Coates, C. New sCMOS vs. current microscopy cameras. Biophotonics International. 18 (5), 24-27 (2011).
  44. Neher, R., Neher, E. Optimizing imaging parameters for the separation of multiple labels in a fluorescence image. Journal of Microscopy. 213 (1), 46-62 (2004).
  45. Deal, J. Hyperspectral imaging fluorescence excitation scanning spectral characteristics of remodeled mouse arteries. SPIE. 10890, 108902M (2019).
  46. Deal, J., Rich, T. C., Leavesley, S. J. Optimizing channel selection for excitation-scanning hyperspectral imaging. SPIE. , 108811B (2019).
  47. Biehlmaier, O., Hehl, J., Csucs, G. Acquisition speed comparison of microscope software programs. Microscopy Research and Technique. 74 (6), 539-545 (2011).
  48. . . Comparison with other microscopy software – Micro-manager. , (2012).
check_url/pt/59448?article_type=t

Play Video

Citar este artigo
Deal, J., Britain, A., Rich, T., Leavesley, S. Excitation-Scanning Hyperspectral Imaging Microscopy to Efficiently Discriminate Fluorescence Signals. J. Vis. Exp. (150), e59448, doi:10.3791/59448 (2019).

View Video