Summary

Construction of CRISPR Plasmids and Detection of Knockout Efficiency in Mammalian Cells through a Dual Luciferase Reporter System

Published: December 05, 2020
doi:

Summary

Here, we present a protocol describing a streamlined method for the efficient generation of plasmids expressing both the CRISPR enzyme and associated single guide RNA (sgRNAs). Co-transfection of mammalian cells with this sgRNA/CRISPR vector and a dual luciferase reporter vector that examines double-strand break repair allows evaluation of knockout efficiency.

Abstract

Although highly efficient, modification of a genomic site by the CRISPR enzyme requires the generation of a sgRNA unique to the target site(s) beforehand. This work describes the key steps leading to the construction of efficient sgRNA vectors using a strategy that allows the efficient detection of the positive colonies by PCR prior to DNA sequencing. Since efficient genome editing using the CRISPR system requires a highly efficient sgRNA, a preselection of candidate sgRNA targets is necessary to save time and effort. A dual luciferase reporter system has been developed to evaluate knockout efficiency by examining double-strand break repair via single strand annealing. Here, we use this reporter system to pick up the preferred xCas9/sgRNA target from candidate sgRNA vectors for specific gene editing. The protocol outlined will provide a preferred sgRNA/CRISPR enzyme vector in 10 days (starting with appropriately designed oligonucleotides).

Introduction

The CRISPR sgRNAs comprise a 20-nucleotide sequence (the protospacer), which is complementary to the genomic target sequence1,2. Although highly efficient, the ability of the CRISPR/Cas system to modify a given genomic site requires the generation of a vector carrying an efficient sgRNA unique to the target site(s)2. This paper describes the key steps in the generation of that sgRNA vector.

For successful genome editing using the CRISPR/Cas system, the use of highly efficient sgRNAs is a crucial prerequisite3,4,5. Since engineered nucleases used in genome editing manifest diverse efficiencies at different targeted loci1, a pre-selection of candidate sgRNA targets is necessary in order to save time and effort6,7,8,9. A dual luciferase reporter system has been developed to evaluate knockout efficiency by examining double-strand break repair via single strand annealing3,10. Here we use this reporter system to choose a preferred CRISPR sgRNA target from different candidate sgRNA vectors designed for specific gene editing. The protocol stated here has been implemented in our group and collaborating laboratories for the last few years to generate and evaluate CRISPR sgRNAs.

The following protocol sums up how to design suitable sgRNA through network software. Once the suitable sgRNAs are selected, we describe the different steps to obtain the required oligonucleotides as well as the approach for inserting the paired oligonucleotides into the pX330-xCas9 expression vector. We also present a method for assembling sgRNA-expressing and dual luciferase reporter vectors based on the ligation of these sequences into a predigested expression vector (steps 2-10, Figure 1A). Finally we describe how to analyze the the DNA cutting efficiency for each of the sgRNAs (steps 11-12).

Protocol

1. sgRNA oligonucleotide design Design sgRNAs using online tools such as the Cas-Designer online tool (http://www.rgenome.net/cas-designer/). The PAM sequence is important based on the Cas9 being used. For xCas9, the relevant PAM sequences are NG and the former referred Cas-Designer online tool can generate xCas9 relevant sgRNAs. Use sgRNA design tools that encompass algorithms for on- and off-target prediction (http://www.broadinstitute.org/rnai/public/analysis-tools/sgrna-design)<sup class="xref…

Representative Results

The methods outlined in this protocol are for the construction of sgRNA and xCas9 expression vectors and then for the optimization screening of sgRNA oligos with relatively higher gene targeting efficiencies. Here we display a representative example of 3 sgRNA targets to sheep DKK2 exon 1. SgRNA and xCas9 expressing vectors can be built by predigesting the vector backbone (Figure 2) followed by ligating it in a series of short double-strand DNA fragments through annealing oligo pair…

Discussion

The sgRNA vector cloning procedures we have described here facilitates efficient production of sgRNAs, with most of the costs derived from the oligonucleotide ordering and vector sequencing. While the outlined method is designed to allow users to generate sgRNAs for use with CRISPR/Cas9, the protocol can easily be adapted for use with Cas9 orthologues or other RNA-guided endonucleases such as Cpf1, introducing minor modifications to the vector backbone and the oligonucleotide overhanging sequences.

<p class="jove_con…

Declarações

The authors have nothing to disclose.

Acknowledgements

This project was funded by First Class Grassland Science Discipline Program of Shandong Province (China), National Natural Science Foundation of China (31301936, 31572383), the Special Fund for Agro-scientific Research in the Public Interest (201403071), National risk assessment major special project of milk product quality and safety (GJFP201800804) and Projects of Qingdao People's Livelihood Science and Technology (19-6-1-68-nsh, 14-2-3-45-nsh, 13-1-3-88-nsh).

Materials

A new generation of full touch screen gradient PCR instrument LongGene A200 Target gene amplification
AscI restriction enzymes New England Biolabs R0558V Cutting target vectors
BbsI restriction enzyme New England Biolabs R0539S Cutting target vectors
Clean workbench AIRTECH SW-CJ-2FD/VS-1300L-U A partial purification device in the form of a vertical laminar flow, which creates a local high clean air environment
DH5α Competent Cells TaKaRa K613 Plasmid vector transformation
Dual-Luciferas Reporter Assay System Promega E1910 Dual-luciferas reporter assay
Electric thermostatic water bath Sanfa Scientific Instruments DK-S24 Heating reagent by constant temperature in water bath
Electrophoresis Beijing Liuyi Biotechnology Co., Ltd. DYY-6C Control voltage, current, etc.
Eppendorf Reference 2 Eppendorf China Ltd. Reference 2 Accurately draw and transfer traces of liquid
Gel imaging analyzer Beijing Liuyi Biotechnology Co., Ltd. WD-9413B For the analysis of electrophoresis gel images
GloMax 20/20 Luminometer Promega E5311 Detect dual luciferase activity
High speed refrigerated centrifuge BMH sigma 3K15 Nucleic acid extraction and purification
Intelligent biochemical incubator Sanfa Scientific Instruments SHP-160 Provide a suitable temperature environment for the enzyme digestion experiment
LB Broth Agar Sangon Biotech A507003-0250 For the cultivation of E.coli
Lipofectamine 3000 Transfection Reagent Kit Thermo Fisher L3000015 DNA Transfection
SalI restriction enzymes New England Biolabs R3138V Cutting target vectors
SanPrep Column DNA Gel Extraction Kit Sangon Biotech B518131-0050 Recycling DNA fragments
SanPrep Column Plasmid Mini-Preps Kit Sangon Biotech B518191-0100 Extraction of plasmid DNA
T4 DNA Ligase New England Biolabs M0202V Link DNA fragment
TaKaRa MiniBEST DNA Fragment Purification Kit Ver.4.0 TaKaRa 9761 DNA purification
Vertical pressure steam sterilizer JIBIMED LS-50LD High temperature and autoclave to kill bacteria, fungi and other microorganisms in laboratory equipment
Water bath thermostat Changzhou Guoyu Instrument Manufacturing Co., Ltd. SHZ-82 Let the bacteria keep shaking, which is good for contact with air.

Referências

  1. Zhang, H., et al. A surrogate reporter system for multiplexable evaluation of CRISPR/Cas9 in targeted mutagenesis. Scientific Reports. 8 (1), 1042 (2018).
  2. Nageshwaran, S., et al. CRISPR Guide RNA Cloning for Mammalian Systems. Journal of Visualized Experiments. (140), (2018).
  3. Dang, Y., et al. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biology. 16, 280 (2015).
  4. Doench, J. G., et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology. 34 (2), 184-191 (2016).
  5. Moreno-Mateos, M. A., et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nature Methods. 12 (10), 982-988 (2015).
  6. Joung, J., et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nature Protocols. 12 (4), 828-863 (2017).
  7. Yang, L., Yang, J. L., Byrne, S., Pan, J., Church, G. M. CRISPR/Cas9-Directed Genome Editing of Cultured Cells. Current Protocols in Molecular Biology. 107, 1-17 (2014).
  8. Yang, L., Mali, P., Kim-Kiselak, C., Church, G. CRISPR-Cas-mediated targeted genome editing in human cells. Methods in Molecular Biology. 1114, 245-267 (2014).
  9. Vidigal, J. A., Ventura, A. Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries. Nature Communications. 6, 8083 (2015).
  10. Mazon, G., Mimitou, E. P., Symington, L. S. SnapShot: Homologous recombination in DNA double-strand break repair. Cell. 142 (4), 646 (2010).
  11. Doench, J. G., et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nature Biotechnology. 32 (12), 1262-1267 (2014).
  12. Lee, J. K., et al. Directed evolution of CRISPR-Cas9 to increase its specificity. Nature Communications. 9 (1), 3048 (2018).
  13. Sung, Y. H., et al. Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Research. 24 (1), 125-131 (2014).
  14. Ran, F. A., et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 154 (6), 1380-1389 (2013).
  15. Sanger, F., Nicklen, S., Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America. 74 (12), 5463-5467 (1977).
  16. Ruan, J., et al. Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Scientific Reports. 5, 14253 (2015).
  17. Li, K., et al. An plasmid with double fluorescent groups and its application as standard substance. China patent. , (2012).
  18. Li, H., et al. Characterization of the porcine p65 subunit of NF-kappaB and its association with virus antibody levels. Molecular Immunology. 48 (6-7), 914-923 (2011).
  19. Li, H., et al. A pair of sgRNAs targeting porcine RELA gene. China patent. , (2015).
check_url/pt/59639?article_type=t

Play Video

Citar este artigo
Li, H., Qin, H., Zhang, N., Zhao, J., Xin, J., Perez-Campo, F. M., Liu, H. Construction of CRISPR Plasmids and Detection of Knockout Efficiency in Mammalian Cells through a Dual Luciferase Reporter System. J. Vis. Exp. (166), e59639, doi:10.3791/59639 (2020).

View Video