Summary

Quantifying Subcellular Ubiquitin-proteasome Activity in the Rodent Brain

Published: May 21, 2019
doi:

Summary

This protocol is designed to efficiently quantify ubiquitin-proteasome system (UPS) activity in different cellular compartments of the rodent brain. Users are able to examine UPS functioning in nuclear, cytoplasmic and synaptic fractions in the same animal, reducing the amount of time and number of animals needed to perform these complex analyses.

Abstract

The ubiquitin-proteasome system is a key regulator of protein degradation and a variety of other cellular processes in eukaryotes. In the brain, increases in ubiquitin-proteasome activity are critical for synaptic plasticity and memory formation and aberrant changes in this system are associated with a variety of neurological, neurodegenerative and psychiatric disorders. One of the issues in studying ubiquitin-proteasome functioning in the brain is that it is present in all cellular compartments, in which the protein targets, functional role and mechanisms of regulation can vary widely. As a result, the ability to directly compare brain ubiquitin protein targeting and proteasome catalytic activity in different subcellular compartments within the same animal is critical for fully understanding how the UPS contributes to synaptic plasticity, memory and disease. The method described here allows collection of nuclear, cytoplasmic and crude synaptic fractions from the same rodent (rat) brain, followed by simultaneous quantification of proteasome catalytic activity (indirectly, providing activity of the proteasome core only) and linkage-specific ubiquitin protein tagging. Thus, the method can be used to directly compare subcellular changes in ubiquitin-proteasome activity in different brain regions in the same animal during synaptic plasticity, memory formation and different disease states. This method can also be used to assess the subcellular distribution and function of other proteins within the same animal.

Introduction

The ubiquitin-proteasome system (UPS) is a complex network of interconnected protein structures and ligases that controls the degradation of most short-lived proteins in cells1. In this system, proteins are marked for degradation or other cellular processes/fates by the small modifier ubiquitin. A target protein can acquire 1-7 ubiquitin modifications, which can link together at one of seven lysine (K) sites (K6, K11, K27, K29, K33, K48 and K63) or the N-terminal methionine (M1; as known as linear) in the previous ubiquitin2. Some of these polyubiquitin tags are degradation-specific (K48)3, while others are largely independent of the protein degradation process (M1)4,5,6. Thus, the protein ubiquitination process is incredibly complex and the ability to quantify changes in a specific polyubiquitin tag is critical for ultimately understanding the role of that given modification in cellular functioning. Further complicating the study of this system, the proteasome, which is the catalytic structure of the UPS7, both degrades proteins but can also be involved in other non-proteolytic processes8,9. Not surprisingly then, since its initial discovery, normal and aberrant ubiquitin-proteasome activity has been implicated in long-term memory formation and a variety of disease states, including many neurological, neurodegenerative and psychiatric disorders10,11. As a result, methods which can effectively and efficiently quantify UPS activity in the brain are critical for ultimately understanding how this system is dysregulated in disease states and the eventual development of treatment options targeting ubiquitin and/or proteasome functioning.

There are a number of issues in quantifying ubiquitin-proteasome activity in brain tissue from rats and mice, which are the most common model systems used to study UPS function, including 1) the diversity of ubiquitin modifications, and 2) distribution and differential regulation of UPS functioning across subcellular compartments12,13,14. For example, many of the early demonstrations of ubiquitin-proteasome function in the brain during memory formation used whole cell lysates and indicated time-dependent increases in both protein ubiquitination and proteasome activity15,16,17,18,19,20. However, we recently found that ubiquitin-proteasome activity varied widely across subcellular compartments in response to learning, with simultaneous increases in some regions and decreases in others, a pattern that differs significantly from what was previously reported in whole cell lysates21. This is consistent with the limitation of a whole cell approach, as it cannot dissociate the contribution of changes in UPS activity across different subcellular compartments. Though more recent studies have employed synaptic fraction protocols to study the UPS specifically at synapses in response to learning22,23,24, the methods used occlude the ability to measure nuclear and cytoplasmic ubiquitin-proteasome changes in the same animal. This results in an unnecessary need to repeat experiments multiple times, collecting a different subcellular fraction in each. Not only does this result in a greater loss of animal lives, but it eliminates the ability to directly compare UPS activity across different subcellular compartments in response to a given event or during a specific disease state. Considering that protein targets of ubiquitin and the proteasome vary widely throughout the cell, understanding how ubiquitin-proteasome signaling differs in distinct subcellular compartments is critical for identifying the functional role of the UPS in the brain during memory formation and neurological, neurodegenerative and psychiatric disorders.

To address this need, we recently developed a procedure in which nuclear, cytoplasmic and synaptic fractions could be collected for a given brain region from the same animal21. Additionally, to account for the limited amount of protein that can be obtained from collecting multiple subcellular fractions from the same sample, we optimized previously established protocols to assay in vitro proteasome activity and linkage-specific protein ubiquitination in lysed cells collected from rodent brain tissue. Using this protocol, we were able to collect and directly compare learning-dependent changes in proteasome activity, K48, K63, M1 and overall protein polyubiquitination levels in the nucleus and cytoplasm and at synapses in the lateral amygdala of rats. Here, we describe in detail our procedure (Figure 1), which could significantly improve our understanding of how the UPS is involved in long-term memory formation and various disease states. However, it should be noted that the in vitro proteasome activity discussed in our protocol, while widely used, does not directly measure the activity of complete 26S proteasome complexes. Rather, this assay measures the activity of the 20S core, meaning it can only serve as a proxy to understand the activity of the core itself as opposed to the entire 26S proteasome complex.

Protocol

All procedures including animal subjects have been approved by the Virginia Polytechnic Institute and State University Institutional Animal Care and Use Committee (IACUC). 1. Collection and Dissection of Rodent Brain Tissue NOTE: This protocol can be applied to a variety of brain regions and used with various tissue collection procedures. Below is the procedure used in our lab for subcellular of rat brain tissue, using 8-9 week old male Sprague Dawley…

Representative Results

Using the procedure described here, nuclear, cytoplasmic and synaptic fractions were collected from the lateral amygdala of the rat brain (Figure 1). Purity of the individual fractions were confirmed via Western blotting, probing with antibodies against proteins that should be enriched or depleted in the lysate. In the first hemisphere where a crude synaptic fraction was collected, postsynaptic density protein 95 (PSD95) was present in the synaptic, but not n…

Discussion

Here, we demonstrate an efficient method for quantifying changes in ubiquitin-proteasome activity across different subcellular compartments in the same animal. Currently, most attempts at measuring subcellular changes in activity of the ubiquitin-proteasome system have been limited to a single compartment per sample, resulting in the need to repeat experiments. This leads to significant costs and loss of animal life. Our protocol alleviates this problem by splitting hemispheres, allowing different cellular fractions to b…

Declarações

The authors have nothing to disclose.

Acknowledgements

This work was supported by startup funds from the College of Agricultural and Life Sciences and the College of Science at Virginia Tech. T.M. is supported by the George Washington Carver Program at Virginia Tech.

Materials

0.5M EDTA Fisher 15575020 Various other vendors
20S Proteasome Activity Kit Millipore Sigma APT280 Other vendors carry different versions
ATP Fisher FERR1441 Various other vendors
Beta-actin antibody Cell signaling 4967S Various other vendors
Beta-tubulin antibody Cell signaling 2128T Various other vendors
BioTek Synergy H1 plate reader BioTek VATECHH1MT3 Other vendors carry different versions
B-mercaptoethanol Fisher ICN19024280 Various other vendors
clasto lactacystin b-lactone Millipore Sigma L7035 Various other vendors
Cryogenic cup Fisher 033377B Various other vendors
DMSO DMSO D8418 Varous other vendors
DTT Millipore Sigma D0632 Various other vendors
Glycerol Millipore Sigma G5516 Various other vendors
H3 antibody Abcam ab1791 Various other vendors
HEPES Millipore Sigma H3375 Various other vendors
Hydrochloric acid Fisher SA48 Various other vendors
IGEPAL (NP-40) Millipore Sigma I3021 Various other vendors
K48 Ubiquitin Antibody Abcam ab140601 Various other vendors
K63 Ubiquitin Antibody Abcam ab179434 Various other vendors
KCl Millipore Sigma P9541 Various other vendors
KONTES tissue grinder VWR KT885300-0002 Various other vendors
Laemmli sample buffer Bio-rad 161-0737 Various other vendors
Linear Ubiquitin Antibody Life Sensors AB-0130-0100 Only M1 antibody
MgCl Millipore Sigma 442611 Various other vendors
Microcentrifuge Eppendorf 2231000213 Various other manufacturers/models
myr-AIP Enzo Life Sciences BML-P212-0500 Carried by Millipore-Sigma
NaCl Millipore Sigma S3014 Various other vendors
Odyssey Fc Imaging System LiCor 2800-02 Other vendors carry different versions
Phosphatase Inhibitor Millipore Sigma 524625 Various other vendors
Precision Plus Protein Standard Bio-rad 161-0373 Various other vendors
Protease Inhibitor Millipore Sigma P8340 Various other vendors
PSD95 antibody Cell signaling 3450T Various other vendors
SDS Millipore Sigma L3771 Various other vendors
Sodium hydroxide Fisher SS255 Various other vendors
Sucrose Millipore Sigma S0389 Various other vendors
TBS Alfa Aesar J62938 Varous other vendors
Tris Millipore Sigma T1503 Various other vendors
Tween-20 Fisher BP337-100 Various other vendors
Ubiquitin Antibody Enzo Life Sciences BML-PW8810 Various other vendors

Referências

  1. Hershko, A., Ciechanover, A. The ubiquitin system. Annu Rev Biochem. 67, 425-479 (1998).
  2. Akutsu, M., Dikic, I., Bremm, A. Ubiquitin chain diversity at a glance. Journal of Cell Science. 129 (5), 875-880 (2016).
  3. Ravid, T., Hochstrasser, M. Diversity of degradation signals in the ubiquitin-proteasome system. Nature Reviews Molecular Cell Biology. 9 (9), 679-690 (2008).
  4. Erpapazoglou, Z., Walker, O., Haguenauer-Tsapis, R. Versatile roles of k63-linked ubiquitin chains in trafficking. Cells. 3 (4), 1027-1088 (2014).
  5. Iwai, K., Fujita, H., Sasaki, Y. Linear ubiquitin chains: NF-kappaB signalling, cell death and beyond. Nature Review Molecular Cell Biology. 15 (8), 503-508 (2014).
  6. Rieser, E., Cordier, S. M., Walczak, H. Linear ubiquitination: a newly discovered regulator of cell signalling. Trends in Biochemical Sciences. 38 (2), 94-102 (2013).
  7. Collins, G. A., Goldberg, A. L. The Logic of the 26S Proteasome. Cell. 169 (5), 792-806 (2017).
  8. Bhat, K. P., et al. The 19S proteasome ATPase Sug1 plays a critical role in regulating MHC class II transcription. Molecular Immunology. 45 (8), 2214-2224 (2008).
  9. Ezhkova, E., Tansey, W. P. Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Molecular Cell. 13 (3), 435-442 (2004).
  10. Jarome, T. J., Helmstetter, F. J. The ubiquitin-proteasome system as a critical regulator of synaptic plasticity and long-term memory formation. Neurobiology of Learning and Memory. 105, 107-116 (2013).
  11. Hegde, A. N., Upadhya, S. C. The ubiquitin-proteasome pathway in health and disease of the nervous system. Trends in Neuroscience. 30 (11), 587-595 (2007).
  12. Adori, C., et al. Subcellular distribution of components of the ubiquitin-proteasome system in non-diseased human and rat brain. Journal of Histochemistry and Cytochemistry. 54 (2), 263-267 (2006).
  13. Upadhya, S. C., Ding, L., Smith, T. K., Hegde, A. N. Differential regulation of proteasome activity in the nucleus and the synaptic terminals. Neurochemistry International. 48 (4), 296-305 (2006).
  14. Enenkel, C., Lehmann, A., Kloetzel, P. M. Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast. EMBO Journal. 17 (21), 6144-6154 (1998).
  15. Jarome, T. J., Kwapis, J. L., Ruenzel, W. L., Helmstetter, F. J. CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the formation of long-term memories. Frontiers in Behavioral Neuroscience. 7, 115 (2013).
  16. Jarome, T. J., Werner, C. T., Kwapis, J. L., Helmstetter, F. J. Activity dependent protein degradation is critical for the formation and stability of fear memory in the amygdala. PLoS One. 6 (9), e24349 (2011).
  17. Lopez-Salon, M., et al. The ubiquitin-proteasome cascade is required for mammalian long-term memory formation. European Journal of Neuroscience. 14 (11), 1820-1826 (2001).
  18. Reis, D. S., Jarome, T. J., Helmstetter, F. J. Memory formation for trace fear conditioning requires ubiquitin-proteasome mediated protein degradation in the prefrontal cortex. Frontiers in Behavior Neuroscience. 7, 150 (2013).
  19. Rosenberg, T., Elkobi, A., Rosenblum, K. mAChR-dependent decrease in proteasome activity in the gustatory cortex is necessary for novel taste learning. Neurobiology of Learning and Memory. 135, 115-124 (2016).
  20. Rosenberg, T., Elkobi, A., Dieterich, D. C., Rosenblum, K. NMDAR-dependent proteasome activity in the gustatory cortex is necessary for conditioned taste aversion. Neurobiology of Learning and Memory. 130, 7-16 (2016).
  21. Orsi, S. A., et al. Distinct subcellular changes in proteasome activity and linkage-specific protein polyubiquitination in the amygdala during the consolidation and reconsolidation of a fear memory. Neurobiology of Learning and Memory. 157, 1-11 (2019).
  22. Cullen, P. K., Ferrara, N. C., Pullins, S. E., Helmstetter, F. J. Context memory formation requires activity-dependent protein degradation in the hippocampus. Learning and Memory. 24 (11), 589-596 (2017).
  23. Jarome, T. J., Ferrara, N. C., Kwapis, J. L., Helmstetter, F. J. CaMKII regulates proteasome phosphorylation and activity and promotes memory destabilization following retrieval. Neurobiology of Learning and Memory. 128, 103-109 (2016).
  24. Lee, S. H., et al. Synaptic protein degradation underlies destabilization of retrieved fear memory. Science. 319 (5867), 1253-1256 (2008).
  25. Dunah, A. W., Standaert, D. G. Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. Journal of Neuroscience. 21 (15), 5546-5558 (2001).
  26. Kelly, P. T., Cotman, C. W. Synaptic proteins. Characterization of tubulin and actin and identification of a distinct postsynaptic density polypeptide. Journal of Cell Biology. 79 (1), 173-183 (1978).
  27. Mengual, E., Arizti, P., Rodrigo, J., Gimenez-Amaya, J. M., Castano, J. G. Immunohistochemical distribution and electron microscopic subcellular localization of the proteasome in the rat CNS. Journal of Neuroscience. 16 (20), 6331-6341 (1996).
check_url/pt/59695?article_type=t

Play Video

Citar este artigo
McFadden, T., Devulapalli, R. K., Jarome, T. J. Quantifying Subcellular Ubiquitin-proteasome Activity in the Rodent Brain. J. Vis. Exp. (147), e59695, doi:10.3791/59695 (2019).

View Video