Summary

Quantifying Corticolous Arthropods Using Sticky Traps

Published: January 19, 2020
doi:

Summary

We describe a semi-quantitative approach of measuring characteristics of corticolous (bark-dwelling) arthropod communities. We placed commercially manufactured sticky traps on tree boles to estimate abundance, total length (a surrogate to biomass), richness, and Shannon diversity for comparison among tree species.

Abstract

Terrestrial arthropods play an important role in our environment. Quantifying arthropods in a way that allows for a precise index or estimate of density requires a method with high detection probability and a consistent sampling area. We used manufactured sticky traps to compare abundance, total length (a surrogate for biomass), richness, and Shannon diversity of corticolous arthropods among the boles of 5 tree species. Efficacy of this method was adequate to detect variation in corticolous arthropods among tree species and provide a standard error of the mean that was <20% of the mean for all estimates with sample sizes from 7 to 15 individual trees of each species. Our results indicate, even with these moderate sample sizes, the level of precision of arthropod community metrics produced with this approach is adequate to address most ecological questions regarding temporal and spatial variation in corticolous arthropods. Results from this method differ from other quantitative approaches such as chemical knockdown, visual inspection, and funnel traps in that they provide an indication of corticolous arthropod activity over a relatively long-term, better including temporary bole residents, flying arthropods that temporarily land on the tree bole and crawling arthropods that use the tree bole as a travel route from the ground to higher forest foliage. Furthermore, we believe that commercially manufactured sticky traps provide more precise estimates and are logistically simpler than the previously described method of directly applying a sticky material to tree bark or applying a sticky material to tape or other type of backing and applying that to the tree bark.

Introduction

Terrestrial arthropods play an important role in our environment. In addition to being of scientific interest in their own right, arthropods can be both detrimental and beneficial to other trophic levels (i.e., crops, horticultural plants, native vegetation, and food for insectivorous organisms1,2,3,4). Thus, understanding the factors that influence arthropod community development and abundance is critical to farmers5, pest control managers6, foresters4, plant biologists7, entomologists8, and wildlife and conservation ecologists that study community dynamics and manage insectivorous organisms9. Arthropod communities vary in species composition and abundance both temporally and spatially across a variety of ecological landscapes including plant communities, plant species, and across various regions of individual plants. For example, studies have demonstrated significant differences in arthropod community metrics between the roots, bole and stems, and foliage, within the same individual tree10,11. These findings are not surprising considering that different parts of the same plant, e.g., leaves versus barks of a tree, provide different resources for which arthropods have adapted to exploit. Thus, each part of the plant can support a different arthropod community. Because foliage dwelling arthropods can have such a large socioeconomic and environmental impact, substantial effort has been expended to measure community metrics using both qualitative and quantitative approaches12. Alternatively, much less effort has been expended to develop approaches of quantifying corticolous (bark-dwelling) arthropod communities.

Like foliage-dwelling arthropod communities, corticolous arthropod communities can be important from both a socioeconomic and environmental viewpoint. Some forest diseases that are caused or facilitated by corticolous arthropods can be detrimental to economically viable timber harvest4. Additionally, corticolous arthropods can be an important component of the food chain in forest communities13,14. For example, forest dwelling arthropods are the primary food source for many insectivorous bark gleaning song birds15,16. Thus, understanding the factors that influence communities of corticolous arthropods is of interest to foresters and both basic and applied ecologists.

Understanding factors that influence arthropod community composition and abundance often requires the capture of individuals. Capture techniques can generally be categorized into qualitative techniques that only detect presence of a species for estimates of species range, richness, and diversity17, or semi-quantitative and quantitative techniques that allow for an index or estimate of abundance and density of individuals within a taxonomic group18,19. Semi-quantitative and quantitative techniques allow researchers to estimate or at least consistently sample a specified sample area and estimate probability of detection or assume detection probability is non-directional and adequate as to not obscure the researcher's ability to detect spatial or temporal variation in abundance. Semi-quantitative and quantitative techniques for quantifying corticolous arthropods include suction or vacuum sampling of a specific area20,21,22, systematic counting of visible arthropods18,23, sticky traps24, various funnel or pot-type traps8,25, and entrance or emergent holes26,27.

A number of spatial and temporal factors are thought to lead to variation in corticolous arthropod communities11,14,28,29. For example, texture of tree bark is thought to influence the community structure of tree-dwelling arthropods14. Because of the more diverse surface area of the trunks of trees with more furrowed bark, trees with more furrowed bark are thought to support a greater diversity and abundance of arthropods14.

With this article we report a new semi-quantitative approach of enumerating corticolous arthropods that could be used to describe and test hypotheses regarding variation in corticolous arthropod communities across time and space with adequate precision to detect differences among tree species. Using sticky traps attached to the trunks of trees, we compared the abundance, total length (a surrogate for body mass), richness, and diversity of the arthropod community on the bole of white oak (Quercus alba), pignut hickory (Carya glabra), sugar maple (Acer saccharum), American beech (Fagus grandifolia), and tulip poplar (Liriodendron tulipifera) trees, trees that vary in bark texture.

This study was conducted in the Ozark and Shawnee Hills ecological sections of the Shawnee National Forest (SNF) in southwestern Illinois. During July 2015, we identified 18 (9 dominated by oak/hickory and 9 dominated by beech/maple) sites with the USFS stand cover map for the SNF (allveg2008.shp) in ArcGIS 10.1.1. In the xeric sites, the dominant species were pignut hickory and white oak and in mesic sites, the dominant species were American beech, sugar maple, and tulip poplar. To compare bole arthropod community among tree species, at each data collection site, we identified the three of the five (white oak, pignut hickory, sugar maple, American beech and tulip poplar) focal species trees >17 cm diameter at breast height (d.b.h.) closest to the center of a 10 m radial circle. If fewer than three appropriate trees were present, the circle was expanded and the closest tree fitting the criteria was selected. For each tree chosen, we installed four sticky traps at breast height, one facing in each cardinal direction: north, south, east and west.

We collected arthropod data from the boles of 54 individual trees (12 pignut hickories, 15 white oaks, 8 American beeches, 12 sugar maples, and 7 tulip poplars) among the 18 sites. We grouped arthropods according to a simplified guild classification by diagnostic morphological characteristics indicative of closely related orders from current phylogenetic records, similar to that of "operational taxonomic units"30,31 (Appendix A). Based on this classification, we captured representatives of 26 guilds in our traps that were each in place for 9 days (Appendix A). Because our study focused on trophic interactions between tree species, corticolous arthropods, and bark-gleaning birds, we removed all arthropods smaller than 3 mm from analysis because their importance as a food resource is minimal for bark-gleaning birds. We used a mixed model that included either arthropod length (surrogate to body mass), abundance, Shannon diversity and, richness as the dependent variable, tree species and effort (proportion of tree covered with traps) as fixed variables, and site as a random variable. Because all traps from a single tree were combined as one sample, individual trees were not included as a random variable.

Protocol

1. Placement of a trap on the tree Measure the diameter of a tree at breast height. At breast height in each cardinal direction, for an area the size of the pre-manufactured sticky trap (glue board), use a bark shaver to remove bark until an area the size for the sticky trap is smooth enough to staple the sticky trap onto the tree so that there is no space for arthropods to crawl under the trap. Label the back of the trap using a dark colored permanent marker with the date, trap number, location and other per…

Representative Results

Based on the mixed model results, the model that included tree species best explained variation in total arthropod length, abundance, and diversity, neither of independent variables explained substantial variation in richness, although the models that included tree species trapping effort were competitive with the null model (Table 1). In addition, proportion of the tree trapped appears to have no influence on abundance, total length, and Shannon diversity, with only mini…

Discussion

Although alternative techniques such as suction or sweep nets have been used, most previously published attempts at quantifying arthropods on tree boles used some version of either quantifying arthropods by visually inspecting tree boles in the field, using chemical pesticides to kill arthropods in a specified area then quantifying the recovered arthropods, or placing funnel traps or a sticky substance directly onto the tree19,23,25</…

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank the U.S. Department of Agriculture Forest Service for funding this project through USFS Agreement 13-CS-11090800-022. Support for ECZ was provided by NSF-DBI-1263050. ECZ assisted in the development of the research concept, collected all field data, conducted laboratory analysis, and produced the original manuscript. MWE assisted in the development of the research concept and study design, assisted in directing field data collection and laboratory analysis, and heavily edited the manuscript. KPS assisted with study design, directed the field and laboratory work, assisted with data analysis, and reviewed the manuscript.

Materials

Straight Draw Bark Shaver, 8" Timber Tuff TMB-08DS
PRO SERIES Bulk Mouse & Insect Glue Boards Catchmaster #60m
Staple gun Stanley TR45D

Referências

  1. Vitousek, P. M., D’Antonio, C. M., Loope, L. L., Westbrooks, R. Biological invasions as global environmental change. American Scientist. 84, 468-478 (1996).
  2. Pimentel, D., Lach, L., Zuniga, R., Morrison, D. Environmental and Economic Costs of Nonindigenous Species in the United States. BioScience. 50 (1), 53-65 (2000).
  3. Boyd, I. L., Freer-Smith, P. H., Gilligan, C. A., Godfray, H. C. J. The consequence of tree pests and diseases for ecosystem services. Science. 342, 1235773 (2013).
  4. Mercader, R. J., McCullough, D. G., Bedford, J. M. A comparison of girdled ash detection trees and baited artificial traps for Agrilus planipennis (Coleoptera: Buprestidae) detection. Environmental Entomology. 42, 1027-1039 (2013).
  5. Childers, C. C., Ueckermann, E. A. Non-phytoseiid Mesostigmata within citrus orchards in Florida: species distribution, relative and seasonal abundance within trees, associated vines and ground cover plants and additional collection records of mites in citrus orchards. Experimental and Applied Acarology. 65, 331-357 (2015).
  6. Miller, J. D., Lindsay, B. E. Influences on individual initiative to use gypsy moth control in New Hampshire, USA. Environmental Management. 17, 765-772 (1993).
  7. Eisenhauer, N., et al. Soil arthropods beneficially rather than detrimentally impact plant performance in experimental grassland systems of different diversity. Soil Biology & Biochemistry. 42, 1418-1424 (2010).
  8. Moeed, A., Meads, M. J. Invertebrate fauna for four tree species in Orongorongo Valley, New Zealand, as revealed by trunk traps. New Zealand Journal of Ecology. 6, 39-53 (1983).
  9. Sierzega, K., Eichholz, M. W. Understanding the potential biological impacts of modifying disturbance regimes in deciduous forests. Oecologia. 189, 267-277 (2019).
  10. Fritz, &. #. 2. 1. 4. ;. Vertical distribution of epiphytic bryophytes and lichens emphasizes the importance of old beeches in conservation. Biodiversity and Conservation. 18, 289-304 (2009).
  11. Ulyshen, M. D. Arthropod vertical stratification in temperate deciduous forests: Implications for conservation-oriented management. Forest Ecology and Management. 261, 1479-1489 (2011).
  12. Swart, R. C., Pryke, J. S., Roets, F. Optimising the sampling of foliage arthropods from scrubland vegetation for biodiversity studies. African Entomology. 25 (1), 164-174 (2017).
  13. Andre, H. M. Associations between corticolous microarthropod communities and epiphytic cover on bark. Holarctic Ecology. 8, 113-119 (1985).
  14. Nicolai, V. The bark of trees: thermal properties, microclimate and fauna. Oecologia. 69, 148-160 (1986).
  15. Beal, F. E. L. Food of the woodpeckers of the United States (No. 37). U.S. Department of Agriculture, Biological Survey. , (1911).
  16. Williams, J. B., Batzli, G. O. Winter Diet of a Bark-Foraging Guild of Birds. The Wilson Bulletin. 91, 126-131 (1979).
  17. Allison, J. D., Richard, A. R. The Impact of Trap Type and Design Features on Survey and Detection of Bark and Woodboring Beetles and Their Associates: A Review and Meta-Analysis. Annual Review of Entomology. 62, 127-146 (2017).
  18. Hooper, R. G. Arthropod biomass in winter and the age of longleaf pines. Forest Ecology and Management. 82, 115-131 (1996).
  19. Proctor, H. C., et al. Are tree trunks habitats or highways? A comparison of oribatid miteassemblages from hoop-pine bark and litter. Australian Journal of Entomology. 41, 294-299 (2002).
  20. Dietrick, E. J. An improved backpack motor fan for suction sampling of insect populations. Journal of Economic Entomology. 54, 394-395 (1961).
  21. Stewart, A. J. A., Wright, A. F. A new inexpensive suction apparatus for sampling arthropods in grasslands. Ecological Entomology. 20, 98-102 (1995).
  22. Jäntti, A., et al. Prey depletion by the foraging of the Eurasian treecreeper, Certhia familiaris, on tree-trunk arthropods. Oecologia. 128, 488-491 (2001).
  23. Prinzing, A. J. Use of Shifting Microclimatic Mosaics by Arthropods on Exposed Tree Trunks. Annals – Entomological Society of America. 94, 210-218 (2001).
  24. Hébert, C., St-Antoine, L. Oviposition trap to sample eggs of Operophtera bruceata (Lepidoptera: Geometridae) and other wingless geometrid species. Canadian Entomologist. 131 (4), 557-566 (1999).
  25. Hanula, J. L., New, K. C. P. A trap for capturing arthropods crawling up tree boles. Res. Note SRS-3, USDA Forest Service, Southern Research Station. , (1996).
  26. Lozano, C., Kidd, N. A. C., Jervis, M. A., Campos, M. Effects of parasitoid spatial heterogeneity, sex ratio and mutual interference on the interaction between the olive bark beetle Phloeotribus scarahaeoides (Col., Scolytidae) and the pteromalid parasitoid Cheiropachus quadrum (Hym., Pteromalidae). Journal of Applied Entomology. 121 (9/10), 521-528 (1997).
  27. Kelsey, R. G., Gladwin, J. Attraction of Scolytus unispinosus bark beetles to ethanol in water-stressed Douglas-fir branches. Forest Ecology and Management. 144, 229-238 (2001).
  28. Walter, D. E., Lowman, M., Rinker, H. B. Hidden in plain site: Mites in the Canopy. Forest Canopies. , 224-241 (2004).
  29. Pinzón, J., Spence, J. R. Bark-dwelling spider assemblages (Araneae) in the boreal forest: dominance, diversity, composition and life-histories. Journal of Insect Conservation. 14, 439-458 (2010).
  30. Futuyma, D. J., Gould, F. Associations of plants and insects in deciduous forest. Ecological Monographs. 49, 33-50 (1979).
  31. Marshall, S. . Insects: their natural history and diversity: with a photographic guide to insects of eastern North America. , (2006).
  32. Hódar, J. A. The use of regression equations for estimation of arthropod biomass in ecological studies. Acta Oecologia. 17, 421-433 (1996).
  33. Rogers, L. E., Hinds, W. T., Buschbom, R. A general weight vs. length relationship for insects. Annals – Entomological Society of America. 69, 387-389 (1976).
  34. Schoener, T. W. Length-weight regressions in tropical and temperate forest understory insects. Annals – Entomological Society of America. 73, 106-109 (1980).
  35. Hanula, J. L., Franzreb, K. Source, distribution and abundance of macroarthropods on the bark of longleaf pine: potential prey of the red-cockaded woodpecker. Forest Ecology and Management. 102, 89-102 (1998).
  36. Collins, C. S., Conner, R. N., Saenz, D. Influence of hardwood midstroy and pine species on pine bole arthropods. Forest Ecology and Management. 164, 211-220 (2002).
  37. Collins, C. W., Hood, C. E. Gypsy moth tree banding material: How to make, use, and apply it. Bulletin 899 of the United States Department of Agriculture. , (1920).
  38. King, R. S., Wrubleski, D. A. Spatial and diel availability of flying insects as potential duckling food in prairie wetlands. Wetlands. 18, 100-114 (1998).
  39. Atakan, E., Canhilal, R. Evaluation of Yellow Sticky Traps at Various Heights for Monitoring Cotton Insect Pests. Journal of Agricultural and Urban Entomology. 21, 15-24 (2004).
  40. Dial, R., Roughgarden, J. Experimental Removal of Insectivores from Rain Forest Canopy: Direct and Indirect Effects. Ecology. 76, 1821-1834 (1995).
  41. Speight, M. R., Leather, S. R., Lawton, J. H., Likens, G. E. Sampling insects from trees: shoots, stems, and trunks. Insect sampling for forest ecosystems. , 77-115 (2005).
  42. Southwood, T. R. E., Henderson, P. A. . Ecological methods. , (2009).
  43. Sierzega, K., Eichholz, M. W. Understanding the potential biological impacts of modifying disturbance regimes in deciduous forests. Oecologia. 189, 267-277 (2019).
check_url/pt/60320?article_type=t

Play Video

Citar este artigo
Eichholz, M. W., Zarri, E. C., Sierzega, K. P. Quantifying Corticolous Arthropods Using Sticky Traps. J. Vis. Exp. (155), e60320, doi:10.3791/60320 (2020).

View Video