Summary

无参考牵引力显微镜平台的制造和实施

Published: October 06, 2019
doi:

Summary

该协议提供了用于实施多光子光刻的指令,以制造嵌入聚(乙二醇)水凝胶中的荧光基准标记的三维阵列,用作无参考、牵引力显微镜平台。使用这些说明,简化了 3D 材料应变的测量和蜂窝牵引力的计算,以促进高通量牵引力测量。

Abstract

量化细胞引起的材料变形提供了有关细胞如何感知和响应其微环境的物理特性的有用信息。虽然有许多方法可用于测量细胞引起的材料应变,但这里我们提供了一种以无参考方式以亚微米分辨率监测应变的方法。使用双光子激活光刻图案化过程,我们演示如何生成机械和生物主动可调合成基板,其中包含嵌入式荧光基准标记阵列,以轻松测量三维 (3D) 材料变形轮廓,以响应表面牵引力。使用这些基板,可以使用感兴趣的细胞的单个 3D 图像堆栈映射细胞张力曲线。我们采用这种方法的目标是使牵引力显微镜成为研究细胞干扰转导过程的研究人员,尤其是该领域新手更容易获得和更容易实施的工具。

Introduction

牵引力显微镜 (TFM) 是使用附着细胞和收缩细胞生成的基准标记的插值位移场近似细胞牵引力的过程。使用TFM,可以研究细胞外环境中的机械线索对重要的细胞过程的影响,如增殖、分化和迁移。,5,6,7,8,9,10,11,12遗憾的是,许多现有方法可能难以实现,或者需要熟悉高度专业化的分析和计算工具,从而使没有经验的研究人员难以使用 TFM。我们描述了一种生成 TFM 平台的方法,该方法消除了分析中的一些困难,同时还提供高吞吐量数据采集。

在现有的TFM方法中,最常用的用于量化材料应变的方法包括将小荧光标记物(通常是纳米或微米大小的荧光珠)加入可变形的水凝胶中,如聚丙烯酰胺(PAA)或聚烯酰胺(PAA)或聚烯酰胺(乙二醇)二甲苯甲酸酯(PEGDA)13,14,15 。这些基于珠的方法提供了在感兴趣的细胞周围密集聚类基准标记的能力,以最大化位移采样。不幸的是,磁珠在整个水凝胶中的分布不能直接控制,因此空间组织是随机的。这种随机放置会导致诸如珠子太近而无法准确解决等问题,或者扩散到基板的斑块产生低质量的数据。无法预测基准标记在没有单元格的情况下的位置也会产生一个约束,对于每组收集的单元牵引数据,还必须捕获处于宽松状态的基础标记的附加参考图像。需要参考图像,以便可以近似于强调图像和无应力图像之间的差异。为了达到放松状态,被测量的细胞要么化学放松,要么完全去除。此过程通常阻止进一步的实验测量,抑制长期细胞研究,并限制吞吐量。参考图像还需要图像配准技术来适应实验期间可能发生的漂移,这通常导致将应力状态图像与参考图像进行繁琐的手动匹配。

其他被视为无参考的TFM方法,通过高分辨率光刻、微接触印刷或微成型16、17、18对基准标记的分布实施某种形式的控制,1920.无参考 TFM 是通过假设每个基准标记的宽松状态可以根据制造过程中标记位置的指定方式预测的。这些方法允许在单个图像捕获中完全捕获细胞的张力状态,其中基准标记位移与隐含参考相比,比从基准标记几何中推断的要低。虽然标记放置的一致性通常使用这些平台来实现,但相对于广泛使用的基于珠的方法,它们通常有其自身的缺点,包括:1) 牵引力降低;2) 降低平面外位移的精度(在某些情况下完全无法测量);3) 平台基材和材料的可定制性降低(例如配体表示、机械性能)。

为了解决这些缺点,我们设计了一个新的无参考TFM平台。该平台利用多光子活性化学将少量荧光荧光酸与水凝胶内的特定 3D 位置交联,作为测量材料应变的基准标记。通过这种方式,我们设计了一个平台,其操作方式与基于珠子的方法类似,但具有显著优势的是,基准标记被组织成网格数组,允许无参考材料应变跟踪。这种无参考属性提供了许多优点。首先,它允许对细胞牵引状态进行非侵入性监测(即,避免需要放松或移除细胞以获得置换基准标记的参考位置)。这是我们设计该系统的主要目标,因为我们打算将其他下游分析方法与 TFM 结合使用,这与破坏性的端点 TFM 方法可能很困难。其次,使用基于网格数组的隐含引用可实现几乎完全自动化的位移分析。数组的规律性创建了一个可预测的工作流,其中异常情况(即包含意外伪影(如次优标记间距或注册不匹配)的样本单元格数据的发生可以保持在最低限度。第三,无需获取参考图像,即可在较长时间内对单个样本上的多个单元进行监视。这与传统的基于珠的方法形成鲜明对比,根据显微镜自动级运动的保真度,定位误差会累积并增加正确记录参考图像以控制细胞张力的难度。图像。总体而言,该平台有助于提高收集蜂窝张力数据的吞吐量。

通过该协议,我们希望让读者熟悉我们实现的双光子激光扫描光刻技术,以生成这种无参考的 TFM 平台,以测量由种子细胞生成的平面内和平面外牵引组件表面上。该协议未涵盖的一些单体组分的合成。一般来说,这些反应包括几乎相同的”一锅”合成反应方案,前面描述的21,和这些产品的替代品也可以购买。我们还致力于让读者熟悉我们生成的基于软件的工具,以推广使用市售的激光扫描显微镜作为 3D 打印工具,并促进基准标记位移的分析。

Protocol

1. PEGDA基水凝胶的光聚合 收集试剂 收集锂苯基-2,4,6-三甲基苯甲酸酯(LAP),3.4 kDa聚(乙酰)乙二醇二甘醇(PEGDA),n-乙烯基丙酮(NVP),AlexaFluor 488标签PEGDA(PEG-488),AlexaFluor 633标记PEGDA(PEG-633),和PEGylatedPEG-RGDS)从各自的冰柜中,使每个冰柜都室温。 在单独的琥珀微离心管中,测量3毫克LAP、10毫克PEGDA、5毫克PEG-488、20mgPEG-633和6mgRGDS肽。 </li…

Representative Results

在整个协议中,有许多检查点提供反馈,以评估模式化过程的质量。为了提供有关如何评估每个检查点的进度的见解,我们提供实际实验的代表性结果。研究结果强调了该协议在用于人类脐带内皮细胞(HUVECs)的TFM分析制备的光型水凝胶上的应用。结果包括原始图像数据以及每个关键步骤的处理数据输出。 第一个检查点发生在步骤 4,一旦基准标记阵列在水凝胶中进行了光图…

Discussion

该协议的目标是提供一个工作流,以缓解与生成和分析 TFM 数据相关的许多困难。一旦制备,光图案水凝胶易于使用,只需要了解标准组织培养实践和荧光显微镜。无参考方面允许在充满细胞的氢凝胶上无忧无虑地导航,并消除繁琐的图像处理步骤,如参考图像和变形图像之间的图像配准。生成的分析几乎完全自动化,从各个 COA 的数据可以从头到尾分析不到 10 分钟。

该协议…

Declarações

The authors have nothing to disclose.

Acknowledgements

O. A. Banda得到了NSF IGERT SBE2研究金(1144726)、特拉华大学提供的启动基金以及国家卫生研究院/国家癌症研究所IMAT项目(R21CA214299)的资助。JHS得到国家卫生研究院/国家癌症研究所IMAT计划(R21CA214299)和国家科学基金会CAREER奖励计划(1751797)的资助。显微镜访问由NIH-NIGMS(P20 GM103446)、NSF(IIA-1301765)和特拉华州提供资助。结构化照明显微镜是使用特拉华州联邦研究与发展赠款计划(16A00471)获得资金购买的。用于双光子激光扫描光刻的LSM880共焦显微镜是使用共享仪器授予(S10 OD016361)获得的。

Materials

Acrodisc Syringe Filter, 0.2 μm Supor Membrane, Low Protein Binding Pall PN 4602 Allows for filtering of macromer solutions prior to base gel synthesis and subsequent lithography steps.
Acrylate-Silane Functionalized #1.5 Coverslips in-house in-house Acrylates allow binding of base hydrogel to the glass surface to immobilize the hydrogels. See reference: 21-24
Axio-Observer Z1 w/Apotome Zeiss Widefield microscope with structured illumination module used to capture images for TFM.
Chameleon Vision ii Coherent Inc. Equipped on laser-scanning microscope used for multiphoton Lithography.
Double Coated Tape, 9500PC, 6.0 mil 3M Binds acrylate-silane functionalized coverslips to Petri dishes.
Flexmark90 PFW Liner FLEXcon FLX000620 Allows lining of double coated tape enabling feeding of tape into plotter.
LSM-880 Zeiss Laser-Scanning microscope used for Multiphoton Lithography.
MATLAB Mathworks R2018a Runs custom scripts to generate lithography instructions for microscope and for analysis of TFM data.
Model SC Plotter USCutter SC631E Cuts double coated tape into rings to bind coverslips to petri dishes.
Objective C-Apochromat 40x/1.20 W Corr M27 Zeiss Equipped on both widefield microscope and laser-scanning microscope to be used for both lithography and TFM.
PEG-AF633 in-house in-house Fluorophore-labeled acrylate PEG variant for creating fiducial markers. See reference: 21
PEG-DA in-house in-house Base material for hydrogels. See reference: 21
PEG-RGDS in-house in-house RGDS peptide-labeled mono-acrylate PEG variant for promoting cell-adhesion. See reference: 21
Petri Dishes CELLTREAT 229638 8mm holes are cut into the center of each dish using a coring bit to fit base hydrogels.
Sylgard 184 Silicone Elastomer Kit Dow Corning 3097358-1004 For creating spacers to control base hydrogel thickness (aka PDMS).
Syringe, Leur-Lok, 1 mL BD 309628 Allows for filtering of macromer solutions prior to base gel synthesis and subsequent lithography steps.
UV Lamp UVP Blak-Ray® B-100AP Polymerizes base hydrogel.
1-vinyl-2-pyrrolidinone (NVP) Sigma-Aldrich V3409-5G Radical accelerant and co-monomer. Improves pegylated fluorophore incorporation during lithography.

Referências

  1. Rauskolb, C., Sun, S., Sun, G., Pan, Y., Irvine, K. D. Cytoskeletal tension inhibits Hippo signaling through an Ajuba-Warts complex. Cell. 158 (1), 143-156 (2014).
  2. Huang, S., Chen, C. S., Ingber, D. E. Control of Cyclin D1, p27Kip1, and Cell Cycle Progression in Human Capillary Endothelial Cells by Cell Shape and Cytoskeletal Tension. Molecular Biology of the Cell. 9 (11), 3179-3193 (1998).
  3. Plotnikov, S. V., Pasapera, A. M., Sabass, B., Waterman, C. M. Force Fluctuations within Focal Adhesions Mediate ECM-Rigidity Sensing to Guide Directed Cell Migration. Cell. 151 (7), 1513-1527 (2012).
  4. Álvarez-González, B., Meili, R., Bastounis, E., Firtel, R. A., Lasheras, J. C., Del Álamo, J. C. Three-dimensional balance of cortical tension and axial contractility enables fast amoeboid migration. Biophysical Journal. 108 (4), 821-832 (2015).
  5. Provenzano, P. P., Keely, P. J. Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. Journal of Cell Science. 124 (8), 1195-1205 (2011).
  6. Reilly, G. C., Engler, A. J. Intrinsic extracellular matrix properties regulate stem cell differentiation. Journal of Biomechanics. 43 (1), 55-62 (2010).
  7. Wen, J. H., et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nature Materials. 13 (10), 979-987 (2014).
  8. Lee, J., Abdeen, A. A., Tang, X., Saif, T. A., Kilian, K. A. Geometric guidance of integrin mediated traction stress during stem cell differentiation. Biomaterials. 69, 174-183 (2015).
  9. Steward, A. J., Kelly, D. J. Mechanical regulation of mesenchymal stem cell differentiation. Journal of Anatomy. 227 (6), 717-731 (2015).
  10. Lv, H., et al. Mechanism of regulation of stem cell differentiation by matrix stiffness. Stem Cell Research & Therapy. 6 (1), 103 (2015).
  11. Tijore, A., et al. Role of Cytoskeletal Tension in the Induction of Cardiomyogenic Differentiation in Micropatterned Human Mesenchymal Stem Cell. Advanced Healthcare Materials. 4 (9), 1399-1407 (2015).
  12. Lombardi, M. L., Knecht, D. A., Dembo, M., Lee, J. Traction force microscopy in Dictyostelium reveals distinct roles for myosin II motor and actin-crosslinking activity in polarized cell movement. Journal of Cell Science. 120 (9), 1624-1634 (2007).
  13. Legant, W. R., et al. Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proceedings of the National Academy of Sciences. 110 (3), 881-886 (2013).
  14. Sabass, B., Gardel, M. L., Waterman, C. M., Schwarz, U. S. High resolution traction force microscopy based on experimental and computational advances. Biophysical Journal. 94 (1), 207-220 (2008).
  15. Munevar, S., Wang, Y., Dembo, M. Traction Force Microscopy of Migrating Normal and H-ras Transformed 3T3 Fibroblasts. Biophysical Journal. 80 (4), 1744-1757 (2001).
  16. Pushkarsky, I., et al. Elastomeric sensor surfaces for high-Throughput single-cell force cytometry. Nature Biomedical Engineering. 2 (2), 124-137 (2018).
  17. Bergert, M., et al. Confocal reference free traction force microscopy. Nature Communications. 7, (2016).
  18. Schwarz, U. S., et al. Measurement of cellular forces at focal adhesions using elastic micro-patterned substrates. Materials Science and Engineering: C. 23 (3), 387-394 (2003).
  19. Tan, J. L., Tien, J., Pirone, D. M., Gray, D. S., Bhadriraju, K., Chen, C. S. Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proceedings of the National Academy of Sciences. 100 (4), 1484-1489 (2003).
  20. Desai, R. a., Yang, M. T., Sniadecki, N. J., Legant, W. R., Chen, C. S. Microfabricated Post-Array-Detectors (mPADs): an Approach to Isolate Mechanical Forces. Journal of Visualized Experiments. , 1-5 (2007).
  21. Banda, O. A., Sabanayagam, C. R., Slater, J. H. Reference-Free Traction Force Microscopy Platform Fabricated via Two-Photon Laser Scanning Lithography Enables Facile Measurement of Cell-Generated Forces. ACS Applied Materials & Interfaces. 11 (20), 18233-18241 (2019).
  22. Guo, J., Keller, K. A., Govyadinov, P., Ruchhoeft, P., Slater, J. H., Mayerich, D. Accurate flow in augmented networks (AFAN): an approach to generating three-dimensional biomimetic microfluidic networks with controlled flow. Analytical Methods. 11 (1), 8-16 (2019).
  23. Heintz, K. A., Mayerich, D., Slater, J. H. Image-guided, Laser-based Fabrication of Vascular-derived Microfluidic Networks. Journal of Visualized Experiments. (119), 1-10 (2017).
  24. Heintz, K. A., Bregenzer, M. E., Mantle, J. L., Lee, K. H., West, J. L., Slater, J. H. Fabrication of 3D Biomimetic Microfluidic Networks in Hydrogels. Advanced Healthcare Materials. 5 (17), 2153-2160 (2016).
  25. Slater, J. H., Miller, J. S., Yu, S. S., West, J. L. Fabrication of Multifaceted Micropatterned Surfaces with Laser Scanning Lithography. Advanced Functional Materials. 21 (15), 2876-2888 (2011).
  26. Slater, J. H., et al. Recapitulation and Modulation of the Cellular Architecture of a User-Chosen Cell of Interest Using Cell-Derived, Biomimetic Patterning. ACS Nano. 9 (6), 6128-6138 (2015).
  27. Shukla, A., Slater, J. H., Culver, J. C., Dickinson, M. E., West, J. L. Biomimetic Surface Patterning Promotes Mesenchymal Stem Cell Differentiation. ACS Applied Materials & Interfaces. 8 (34), 21883-21892 (2016).
  28. Slater, H. J., Banda, A. O., Heintz, A. K., Nie, T. H. Biomimetic Surfaces for Cell Engineering. Carbon Nanomaterials for Biomedical Applications. , 543-569 (2016).
  29. . Slater Lab Code Repositories Available from: https://github.com/SlaterLab (2019)
  30. Culver, J. C., Hoffmann, J. C., Poché, R. A., Slater, J. H., West, J. L., Dickinson, M. E. Three-dimensional biomimetic patterning in hydrogels to guide cellular organization. Advanced Materials. 24 (17), 2344-2348 (2012).
  31. Toyjanova, J., Bar-Kochba, E., López-Fagundo, C., Reichner, J., Hoffman-Kim, D., Franck, C. High resolution, large deformation 3D traction force microscopy. PLoS ONE. 9 (4), 1-12 (2014).
  32. Pradhan, S., Keller, K. A., Sperduto, J. L., Slater, J. H. Fundamentals of Laser-Based Hydrogel Degradation and Applications in Cell and Tissue Engineering. Advanced Healthcare Materials. 6 (24), 1-28 (2017).
  33. Tibbitt, M. W., Shadish, J. A., DeForest, C. A. Photopolymers for Multiphoton Lithography in Biomaterials and Hydrogels. Multiphoton Lithography. , 183-220 (2016).

Play Video

Citar este artigo
Banda, O. A., Slater, J. H. Fabrication and Implementation of a Reference-Free Traction Force Microscopy Platform. J. Vis. Exp. (152), e60383, doi:10.3791/60383 (2019).

View Video