Summary

基因组编辑细胞系细胞融合,用于细胞结构和功能的扰动

Published: December 07, 2019
doi:

Summary

该协议的目的是融合两种不同的细胞类型,以创建混合细胞。熔融细胞的荧光显微镜分析用于跟踪细胞细胞器来源细胞。此测定可用于探索细胞结构和功能如何对细胞融合对扰动的反应。

Abstract

生命在脂质膜内的空间划分,允许细胞和细胞器内分离形成不同的分子状态。细胞融合是两个或多个细胞的合并,形成单个细胞。在这里,我们提供了两种不同细胞类型的细胞融合协议。融合混合细胞通过基于流式细胞学的分类进行浓缩,然后是混合细胞结构和功能的荧光显微镜。基因组编辑产生的荧光标记蛋白在融合细胞内成像,允许根据荧光发射识别细胞结构,并引用回源细胞类型。这种稳健和一般的方法可以应用于不同的细胞类型或感兴趣的细胞器,以了解细胞结构和功能跨越一系列的基本生物学问题。

Introduction

细胞结构的静时维持对生命至关重要。细胞具有特征形态、亚细胞细胞细胞数和内部生化组合物。了解这些基本特性是如何产生的,以及它们在疾病期间是如何出错的,这需要实验室工具来干扰它们。

细胞融合是两个或多个独立细胞的融合。细胞融合可能是真核生物1的出现的关键。在人体内,细胞融合是比较少见的,发生在受限发育环境和组织类型,如受精期间或形成肌肉,骨骼和胎盘2。该协议描述了细胞-细胞融合在组织培养细胞系的诱导与微分荧光标记的细胞器,作为一个工具,了解控制细胞结构和功能的机制。

体外诱导细胞融合是单克隆抗体3的产生中心,是生物研究和疾病治疗的重要工具。细胞融合还被用来问许多不同的基本细胞生物学问题,关于细胞周期支配4,非倍体5,6,细胞重新编程7,8,修复受损的神经元9,病毒增殖10,凋亡11,肿瘤发生12,细胞骨骼动力学13,和膜融合14,15。基于实验室的方法诱导细胞融合16、17、18、19通过物理合并两个双层细胞合并成一个脂质膜。细胞融合可以由电诱导18,基于病毒的方法17,热质加热20,转基因表达19,以及包括聚乙烯乙二醇(PEG)16、21、22在内的化学物质。

中心体是控制细胞形状、运动、极化和除23的微管组织中心。中生菌根是纤维结构,延伸自含有蛋白质根蛋白24的中源体(由基因CROCC编码)。我们最近使用细胞融合来了解在异体内与父母细胞24相比,中位位置和数量是如何变化的。使用这种方法的原理是跟踪在微分荧光标记的亲子细胞融合后,在异体细胞内的根源细胞,从而成像细胞融合和裂变。荧光标记的蛋白质根蛋白-meGFP或根蛋白-mscarlet-I通过基因组编辑在单独的细胞系中产生,然后通过PEG介导的细胞融合融合。我们描述了使用细胞染料(材料表)来识别融合细胞通过流式细胞学和随后的荧光显微镜鉴定的中源体细胞的起源和形态(图1)。这种方法是一种强大而独特的方法,用于研究细胞状态的重大变化,包括细胞细胞数量如何影响细胞平衡。

Protocol

1. 差分荧光细胞标签 使用 CRISPR Cas9 进行基因标记 使用CRISPR Cas9基因组编辑将根蛋白(或其他感兴趣的基因)与人类癌细胞系中的荧光蛋白meGFP或mscarlet-I标记。注:基因组编辑的详细方案在24、25、26日其他部分进行。 荧光染料标签 在Dulbeco的改性Eagle培养基(DMEM)中生长Cal51?…

Representative Results

在流式细胞测量过程中,荧光信号高于未标记的控制细胞(图2A)。盖茨被设置为对双阳性细胞进行分类,将这个群体直接浓缩成成像皿,以便进行进一步的微观分析。熔融细胞可检测为明显的双荧光阳性细胞,约占种群的±1%。 融合通过将两个细胞混合成一个(图<stron…

Discussion

我们演示了一种简单且经济高效的方案,用于融合细胞,并用显微镜可视化细胞混合的后续架构,从开始到结束大约需要两天时间。该协议的关键部分是通过细胞分拣富化熔融细胞(协议第3节),以及通过显微镜对熔融细胞进行仔细验证(协议第4节)。这些部分确保熔融细胞容易获得,是真正的异体。应坚持浓度和孵育时间。例如,当在较高浓度或较长的孵育时间下使用时,细胞染料在流式细?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作由威尔康信托亨利·韦康奖学金资助R.M.(https://wellcome.ac.uk/grant号100090/12/Z)。在研究设计、数据收集和分析、决定出版或编写手稿方面,受资者没有作用。我们感谢阿肖克·文基塔拉曼和保罗·法兰西对该项目提出的重要建议和指导。我们感谢剑桥医学研究所流细胞测定设施中的基亚拉·科塞蒂和加布里埃拉·格龙迪斯-科塔巴的大力支持。我们感谢利亚姆·卡西迪、托马斯·米勒和吉安马科·孔蒂诺校对手稿。

Materials

15 ml tube Sarstedt 62554502
37% formaldehyde solution Sigma-Aldrich F8875
880 Laser Scanning Confocal Airyscan Microscope Carl Zeiss
8-well imaging dishes Ibidi 80826
Anti-GFP alpaca GFP booster nanobody Chromotek gba-488
BD Influx Cell Sorter BD Biosciences
Bovine serum albumin Sigma-Aldrich A7906
Cell Filters (70um) Biofil CSS010070
CellTrace Far Red ThermoFisher Scientific C34572
CellTrace Violet ThermoFisher Scientific C34571
Dulbecco's Modified Eagle Medium (DMEM), high glucose, GlutaMAX, pyruvate ThermoFisher Scientific 31966021
Fetal Bovine Serum Sigma-Aldrich 10270-106
FluoTag-X2 anti-mScarlet-I alpaca nanobody NanoTag Biotechnologies N1302-At565
L15 CO2 independent imaging medium Sigma-Aldrich 21083027
Penicillin/streptomycin Sigma-Aldrich 15140122
Phenol red free DMEM, high glucose ThermoFisher Scientific 21063029
Phosphate buffered saline (1 x PBS) 8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, 0.24 g KH2HPO4, dH2O up to 1L
Polyethylene Glycol Hybri-Max 1450 Sigma-Aldrich P7181
Polypropylene tubes BD Falcon 352063
Triton X-100 Fisher BioReagents BP151 nonionic surfactant
Trypsin Sigma-Aldrich T4049
Tween 20 Fisher BioReagents BP337 nonionic detergent

Referências

  1. Lane, N. . Power, Sex, Suicide: Mitochondria and the meaning of life. , (2006).
  2. Brukman, N. G., Uygur, B., Podbilewicz, B., Chernomordik, L. V. How cells fuse. The Journal of Cell Biology. 218 (5), 1436-1451 (2019).
  3. Köhler, G., Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 256 (5517), 495-497 (1975).
  4. Rao, P. N., Johnson, R. T. Mammalian Cell Fusion: Studies on the Regulation of DNA Synthesis and Mitosis. Nature. 225 (5228), 159-164 (1970).
  5. Lengauer, C., Kinzler, K. W., Vogelstein, B. Genetic instability in colorectal cancers. Nature. 386 (6625), 623-627 (1997).
  6. Fournier, R. E., Ruddle, F. H. Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells. Proceedings of the National Academy of Sciences of the United States of America. 74 (1), 319-323 (1977).
  7. Tada, M., Tada, T., Lefebvre, L., Barton, S. C., Surani, M. A. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. The EMBO Journal. 16 (21), 6510-6520 (1997).
  8. Skelley, A. M., Kirak, O., Suh, H., Jaenisch, R., Voldman, J. Microfluidic control of cell pairing and fusion. Nature Methods. 6 (2), 147-152 (2009).
  9. Donaldson, J., Shi, R., Borgens, R. Polyethylene glycol rapidly restores physiological functions in damaged sciatic nerves of guinea pigs. Neurosurgery. 50 (1), 147-157 (2002).
  10. Duelli, D. M., Hearn, S., Myers, M. P., Lazebnik, Y. A primate virus generates transformed human cells by fusion. The Journal of Cell Biology. 171 (3), 493-503 (2005).
  11. Duelli, D. M., Lazebnik, Y. A. Primary cells suppress oncogene-dependent apoptosis. Nature Cell Biology. 2 (11), 859-862 (2000).
  12. Duelli, D. M., et al. A virus causes cancer by inducing massive chromosomal instability through cell fusion. Current Biology. 17 (5), 431-437 (2007).
  13. Paramio, J. M., Casanova, M. L., Alonso, A., Jorcano, J. L. Keratin intermediate filament dynamics in cell heterokaryons reveals diverse behaviour of different keratins. Journal of Cell Science. 110, 1099-1111 (1997).
  14. Lentz, B. R. PEG as a tool to gain insight into membrane fusion. European Biophysics Journal. 36 (4-5), 315-326 (2007).
  15. Lentz, B. R., Lee, J. K. Poly(ethylene glycol) (PEG)-mediated fusion between pure lipid bilayers: a mechanism in common with viral fusion and secretory vesicle release?. Molecular Membrane Biology. 16 (4), 279-296 (1999).
  16. Pontecorvo, G. Production of mammalian somatic cell hybrids by means of polyethylene glycol treatment. Somatic Cell Genetics. 1 (4), 397-400 (1975).
  17. Okada, Y. Analysis of giant polynuclear cell formation caused by HVJ virus from Ehrlich’s ascites tumor cells. I. Microscopic observation of giant polynuclear cell formation. Experimental Cell Research. 26, 98-107 (1962).
  18. Zimmermann, U. Electric field-mediated fusion and related electrical phenomena. Biochimica et Biophysica Acta. 694 (3), 227-277 (1982).
  19. Hu, C., et al. Fusion of cells by flipped SNAREs. Science. 300 (5626), 1745-1749 (2003).
  20. Bahadori, A., Lund, A. R., Semsey, S., Oddershede, L. B., Bendix, P. M. Controlled cellular fusion using optically trapped plasmonic nano-heaters. Optical Trapping and Optical Micromanipulation XIII. 9922, 992211 (2016).
  21. Kao, K. N., Michayluk, M. R. A method for high-frequency intergeneric fusion of plant protoplasts. Planta. 115 (4), 355-367 (1974).
  22. Ahkong, Q. F., Fisher, D., Tampion, W., Lucy, J. A. Mechanisms of cell fusion. Nature. 253 (5488), 194-195 (1975).
  23. Mahen, R., Venkitaraman, A. R. Pattern formation in centrosome assembly. Current Opinion in Cell Biology. 24 (1), 14-23 (2012).
  24. Mahen, R. Stable centrosomal roots disentangle to allow interphase centriole independence. PLoS Biology. 16 (4), e2003998 (2018).
  25. Mahen, R., et al. Comparative assessment of fluorescent transgene methods for quantitative imaging in human cells. Molecular Biology of the Cell. 25 (22), 3610-3618 (2014).
  26. Ran, F. A., et al. Genome engineering using the CRISPR-Cas9 system. Nature Protocols. 8 (11), 2281-2308 (2013).
  27. Yang, J., Shen, M. H. Polyethylene glycol-mediated cell fusion. Methods in Molecular Biology. 325, 59-66 (2006).
  28. Huang, L., Chen, Y., Huang, W., Wu, H. Cell pairing and polyethylene glycol (PEG)-mediated cell fusion using two-step centrifugation-assisted single-cell trapping (CAScT). Lab on a Chip. 18 (7), 1113-1120 (2018).
  29. Feliciano, D., Nixon-Abell, J., Lippincott-Schwartz, J. Triggered Cell-Cell Fusion Assay for Cytoplasmic and Organelle Intermixing Studies. Current Protocols in Cell Biology. 81 (1), e61 (2018).
  30. Vaughan, V. L., Hansen, D., Stadler, J. Parameters of polyethylene glycol-induced cell fusion and hybridization in lymphoid cell lines. Somatic Cell Genetics. 2 (6), 537-544 (1976).
  31. Frye, L. D., Edidin, M. The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. Journal of Cell Science. 7 (2), 319-335 (1970).
  32. Mattenberger, Y., James, D. I., Martinou, J. C. Fusion of mitochondria in mammalian cells is dependent on the mitochondrial inner membrane potential and independent of microtubules or actin. FEBS Letters. 538 (1-3), 53-59 (2003).
  33. Kerbel, R. S., Lagarde, A. E., Dennis, J. W., Donaghue, T. P. Spontaneous fusion in vivo between normal host and tumor cells: possible contribution to tumor progression and metastasis studied with a lectin-resistant mutant tumor. Molecular and Cellular Biology. 3 (4), 523-538 (1983).

Play Video

Citar este artigo
Mahen, R., Schulte, R. Cell-cell Fusion of Genome Edited Cell Lines for Perturbation of Cellular Structure and Function. J. Vis. Exp. (154), e60550, doi:10.3791/60550 (2019).

View Video