Summary

Valutazione della funzione di memoria nei topi epilettici indotti da pilocarpina

Published: June 04, 2020
doi:

Summary

Questo articolo presenta procedure sperimentali per valutare i disturbi della memoria nei topi epilettici indotti da pilocarpina. Questo protocollo può essere utilizzato per studiare i meccanismi patofisiologici del declino cognitivo associato all’epilessia, che è una delle comorbidità più comuni nell’epilessia.

Abstract

La compromissione cognitiva è una delle comorbidità più comuni nell’epilessia del lobo temporale. Per ricapitolare il declino cognitivo associato all’epilessia associata all’epilessia in un modello animale di epilessia, abbiamo generato topi epilettici cronici trattati con pilocarpina. Presentiamo un protocollo per tre diversi test comportamentali utilizzando questi mouse epilettici: nuova posizione dell’oggetto (NL), nuovi test di riconoscimento degli oggetti (NO) e di separazione dei modelli (PS) per valutare rispettivamente l’apprendimento e la memoria per luoghi, oggetti e contesti. Spieghiamo come impostare l’apparato comportamentale e fornire procedure sperimentali per i test NL, NO e PS a seguito di un test sul campo aperto che misura le attività locomotorie basali degli animali. Descriviamo anche i vantaggi tecnici dei test NL, NO e PS rispetto ad altri test comportamentali per la valutazione della funzione di memoria nei topi epilettici. Infine, discutiamo delle possibili cause e soluzioni per i topi epilettici che non riescono a fare 30 s di buon contatto con gli oggetti durante le sessioni di familiarizzazione, che è un passaggio critico per il successo dei test di memoria. Pertanto, questo protocollo fornisce informazioni dettagliate su come valutare le compromissione di memoria associate all’epilessia utilizzando i topi. I test NL, NO e PS sono semplici, saggi efficienti che sono appropriati per la valutazione di diversi tipi di memoria nei topi epilettici.

Introduction

L’epilessia è un disturbo cronico caratterizzato da convulsioni ricorrenti spontanee1,2,3. Poiché le crisi ripetitive possono causare anomalie strutturali e funzionali nel cervello1,2,3, un’attività convulsiva anomala può contribuire alla disfunzione cognitiva, che è una delle comorbidità associate all’epilessia più comuni4,5,6. Contrariamente agli eventi convulsioni cronici, che sono transitori e momentanei, i disturbi cognitivi possono persistere durante la vita dei pazienti epilettici, deteriorando la loro qualità di vita. Pertanto, è importante comprendere i meccanismi patofisiologici del declino cognitivo associato all’epilessia.

Vari modelli animali sperimentali di epilessia sono stati utilizzati per dimostrare i deficit di apprendimento e memoria associati all’epilessia cronica7,8,9,,10,11,12. Ad esempio, il labirinto d’acqua Morris, il condizionamento contestuale della paura, la posizione degli oggetti (NL) e i nuovi test di riconoscimento degli oggetti (NO) sono stati spesso utilizzati per valutare la disfunzione della memoria nell’epilessia del lobo temporale (TLE). Poiché l’ippocampo è una delle regioni primarie in cui il TLE mostra patologia, i test comportamentali che possono valutare la funzione di memoria dipendente dall’ippocampo sono spesso selezionati preferibilmente. Tuttavia, dato che le convulsioni possono indurre neurogenesi ippocampale aberrante e contribuire al declino cognitivo associato all’epilessia10, i paradigmi comportamentali per testare la funzione neuronale neonatale (cioè, la separazione del modello spaziale,PS) 8,13 possono anche fornire informazioni preziose sui meccanismi cellulari delle compromissione della memoria nell’epilessia.

In questo articolo, dimostriamo una batteria di test di memoria, NL, NO, e PS, per topi epilettici. I test sono semplici e facilmente accessibili e non richiedono un sistema sofisticato.

Protocol

Tutte le procedure sperimentali sono state approvate dal Comitato Etico dell’Università Cattolica della Corea e sono state eseguite in conformità con i National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publications N. 80-23). 1. Test di posizione dell’oggetto nuovo (NL) Preparare i topi epilettici C57BL/6 o transgenici 4–6 settimane dopo l’iniezione di pilocarpina.NOTA: Le crisi acutati sono state indotte dall’iniezione di pilocarpina intrape…

Representative Results

Nella figura 1è illustrato un programma sperimentale generale e la configurazione per la valutazione della funzione cognitiva. Sei settimane dopo l’introduzione di crisi acute indotta da pilocarpina, i topi sono stati sottoposti ai test NL, NO e PS in ordine separato da periodi di riposo di 3 giorni tra i test (Figura 1A). Per il test NL, due oggetti identici sono stati inseriti nel campo aperto durante la sessione di familiarizzazione (F1) e il giorno successi…

Discussion

Questo lavoro descrive le procedure sperimentali per valutare la funzione cognitiva nei topi con epilessia cronica. Molti diversi paradigmi di test comportamentali vengono utilizzati per valutare le funzioni di apprendimento e memoria nei topi18. Il labirinto dell’acqua Morris, il labirinto del braccio radiale, il labirinto Y, il condizionamento contestuale della paura e i test basati su oggetti sono i test comportamentali più utilizzati e forniscono risultati affidabili. Tra questi, i test NL, N…

Declarações

The authors have nothing to disclose.

Acknowledgements

Ringraziamo il dottor Jae-Min Lee per il suo supporto tecnico. Questo lavoro è stato sostenuto dalle sovvenzioni della National Research Foundation of Korea (NRF) finanziate dal governo coreano (NRF-2019R1A2C1003958, NRF-2019K2A9A2A0000167).

Materials

1 ml syringe Sung-shim Use with the 26 or 30 gauge needle
70% Ethanol Duksan UN1170 Spray to clean the box and objects
black curtain For avoiding unnecessary visual cues
Cresyl violet Sigma C5042 For Cresyl violet staining
cryotome Leica E21040041 For tissue sectioning
double-sided sticky tape For the firm placement of the objects
DPX mounting medium Sigma 06522
ethanol series Duksan UN1170 Make 100%, 95%, 90%, 80%, 70% ethanol solutions
floor plate with narrow grid patterns Leehyo-bio Behavioral experiment equipment, plate size: 42.5 x 42.5 x 0.5 cm, grid size: 2.75 x 2.75 cm
floor plate with wide grid patterns Leehyo-bio Behavioral experiment equipment, plate size: 42.5 x 42.5 x 0.5 cm, grid size: 5.5 x 5.5 cm
illuminometer TES Electrical Electronic Corp. 1334A For the measurement of the room lighting (60 Lux)
Intensive care unit Thermocare #W-1
ketamine hydrochloride Yuhan 7003 Use to anesthetize the mouse for transcardial perfusion
LED lamp Lungo P13A-0422-WW-04 Lighting for the behavioral test room
objects Rubber doll, 50 ml plastic tube, glass Coplin jar, plastic T-flask, glass bottle
open field box Leehyo-bio Behavioral experiment equipment, size: 44 x 44 x 31 cm
paper towel Yuhan-Kimberly 47201 Use to dry open field box and objects
paraformaldehyde Merck Millipore 104005 Make 4% solution
pilocarpine hydrochloride Sigma P6503
ruler Use to locate the objects in the open field box
scopolamine methyl nitrate Sigma S2250 Make 10X stock
Smart system 3.0 Panlab Video tracking system
stopwatch Junso JS-307 For the measurement of explorative activities of mice
sucrose Sigma S9378 For cryoprotection of tissue sections
terbutaline hemisulfate salt Sigma T2528 Make 10X stock
video camera (CCD camera) Vision VCE56HQ-12 Place the camera directly overhead of the open field box
xylazine (Rompun) Bayer korea KR10381 Use to anesthetize the mouse for transcardial perfusion
xylene Duksan UN1307 For Cresyl violet staining

Referências

  1. Chang, B. S., Lowenstein, D. H. Mechanisms of disease – Epilepsy. New England Journal of Medicine. 349 (13), 1257-1266 (2003).
  2. Scharfman, H. E. The neurobiology of epilepsy. Current Neurology and Neuroscience Report. 7 (4), 348-354 (2007).
  3. Rakhade, S. N., Jensen, F. E. Epileptogenesis in the immature brain: emerging mechanisms. Nature Reviews in Neurology. 5 (7), 380-391 (2009).
  4. Breuer, L. E., et al. Cognitive deterioration in adult epilepsy: Does accelerated cognitive ageing exist. Neuroscience and Biobehavior Reviews. 64, 1-11 (2016).
  5. Leeman-Markowski, B. A., Schachter, S. C. Treatment of Cognitive Deficits in Epilepsy. Neurology Clinics. 34 (1), 183-204 (2016).
  6. Helmstaedter, C., Elger, C. E. Chronic temporal lobe epilepsy: a neurodevelopmental or progressively dementing disease. Brain. 132, 2822-2830 (2009).
  7. Groticke, I., Hoffmann, K., Loscher, W. Behavioral alterations in the pilocarpine model of temporal lobe epilepsy in mice. Experimental Neurology. 207 (2), 329-349 (2007).
  8. Long, Q., et al. Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus. Proceedings of the National Academy of Science U. S. A. 114 (17), 3536-3545 (2017).
  9. Lima, I. V. A., et al. Postictal alterations induced by intrahippocampal injection of pilocarpine in C57BL/6 mice. Epilepsy & Behavior. 64, 83-89 (2016).
  10. Cho, K. O., et al. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nature Communication. 6, 6606 (2015).
  11. Zhou, Q., et al. Adenosine A1 Receptors Play an Important Protective Role Against Cognitive Impairment and Long-Term Potentiation Inhibition in a Pentylenetetrazol Mouse Model of Epilepsy. Molecular Neurobiology. 55 (4), 3316-3327 (2018).
  12. Jiang, Y., et al. Ketogenic diet attenuates spatial and item memory impairment in pentylenetetrazol-kindled rats. Brain Research. 1646, 451-458 (2016).
  13. Zhuo, J. M., et al. Young adult born neurons enhance hippocampal dependent performance via influences on bilateral networks. Elife. 5, 22429 (2016).
  14. Kim, J. E., Cho, K. O. The Pilocarpine Model of Temporal Lobe Epilepsy and EEG Monitoring Using Radiotelemetry System in Mice. Journal of Visualized Experiments. (132), e56831 (2018).
  15. Gage, G. J., Kipke, D. R., Shain, W. Whole animal perfusion fixation for rodents. Journal of Visualized Experiments. (65), e3564 (2012).
  16. Muller, C. J., Groticke, I., Bankstahl, M., Loscher, W. Behavioral and cognitive alterations, spontaneous seizures, and neuropathology developing after a pilocarpine-induced status epilepticus in C57BL/6 mice. Experimental Neurology. 219 (1), 284-297 (2009).
  17. Brandt, C., Gastens, A. M., Sun, M., Hausknecht, M., Loscher, W. Treatment with valproate after status epilepticus: effect on neuronal damage, epileptogenesis, and behavioral alterations in rats. Neuropharmacology. 51 (4), 789-804 (2006).
  18. Wolf, A., Bauer, B., Abner, E. L., Ashkenazy-Frolinger, T., Hartz, A. M. A Comprehensive Behavioral Test Battery to Assess Learning and Memory in 129S6/Tg2576 Mice. PLoS One. 11 (1), 0147733 (2016).
  19. Lueptow, L. M. Novel Object Recognition Test for the Investigation of Learning and Memory in Mice. Journal of Visualized Experiments. (126), e55718 (2017).
  20. Antunes, M., Biala, G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cognitive Processing. 13 (2), 93-110 (2012).
  21. van Goethem, N. P., van Hagen, B. T. J., Prickaerts, J. Assessing spatial pattern separation in rodents using the object pattern separation task. Nature Protocols. 13 (8), 1763-1792 (2018).
  22. Leger, M., et al. Object recognition test in mice. Nature Protocols. 8 (12), 2531-2537 (2013).
  23. Moscovitch, M., Cabeza, R., Winocur, G., Nadel, L. Episodic Memory and Beyond: The Hippocampus and Neocortex in Transformation. Annual Reviews in Psychology. 67, 105-134 (2016).
  24. Eichenbaum, H. A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience. 1 (1), 41-50 (2000).
  25. Brown, M. W., Aggleton, J. P. Recognition memory: What are the roles of the perirhinal cortex and hippocampus. Nature Reviews Neuroscience. 2 (1), 51-61 (2001).
  26. Winters, B. D., Forwood, S. E., Cowell, R. A., Saksida, L. M., Bussey, T. J. Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: Heterogeneity of function within the temporal lobe. Journal of Neuroscience. 24 (26), 5901-5908 (2004).
  27. Winters, B. D., Bussey, T. J. Transient inactivation of perirhinal cortex disrupts encoding, retrieval, and consolidation of object recognition memory. Journal of Neuroscience. 25 (1), 52-61 (2005).
  28. Bermudez-Rattoni, F., Okuda, S., Roozendaal, B., McGaugh, J. L. Insular cortex is involved in consolidation of object recognition memory. Learning & Memory. 12 (5), 447-449 (2005).
  29. Akirav, I., Maroun, M. Ventromedial prefrontal cortex is obligatory for consolidation and reconsolidation of object recognition memory. Cerebral Cortex. 16 (12), 1759-1765 (2006).
  30. Cohen, S. J., Stackman, R. W. Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behavior Brain Research. 285, 105-117 (2015).
  31. Cohen, S. J., et al. The Rodent Hippocampus Is Essential for Nonspatial Object Memory. Current Biology. 23 (17), 1685-1690 (2013).
  32. Broadbent, N. J., Gaskin, S., Squire, L. R., Clark, R. E. Object recognition memory and the rodent hippocampus. Learning and Memory. 17 (1), 5-11 (2010).
  33. Tuscher, J. J., Taxier, L. R., Fortress, A. M., Frick, K. M. Chemogenetic inactivation of the dorsal hippocampus and medial prefrontal cortex, individually and concurrently, impairs object recognition and spatial memory consolidation in female mice. Neurobiology of Learning and Memory. 156, 103-116 (2018).
  34. de Lima, M. N., Luft, T., Roesler, R., Schroder, N. Temporary inactivation reveals an essential role of the dorsal hippocampus in consolidation of object recognition memory. Neuroscience Letters. 405 (1-2), 142-146 (2006).
  35. Hammond, R. S., Tull, L. E., Stackman, R. W. On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiology of Learning and Memory. 82 (1), 26-34 (2004).
  36. Clark, R. E., Zola, S. M., Squire, L. R. Impaired recognition memory in rats after damage to the hippocampus. Journal of Neuroscience. 20 (23), 8853-8860 (2000).
  37. Stackman, R. W., Cohen, S. J., Lora, J. C., Rios, L. M. Temporary inactivation reveals that the CA1 region of the mouse dorsal hippocampus plays an equivalent role in the retrieval of long-term object memory and spatial memory. Neurobiology of Learning and Memory. 133, 118-128 (2016).
  38. Mumby, D. G., Gaskin, S., Glenn, M. J., Schramek, T. E., Lehmann, H. Hippocampal damage and exploratory preferences in rats: memory for objects, places, and contexts. Learning & Memory. 9 (2), 49-57 (2002).
  39. Jeong, K. H., Lee, K. E., Kim, S. Y., Cho, K. O. Upregulation of Kruppel-Like Factor 6 in the Mouse Hippocampus after Pilocarpine-Induced Status Epilepticus. Neurociência. 186, 170-178 (2011).
  40. Kim, J. E., Cho, K. O. The Pilocarpine Model of Temporal Lobe Epilepsy and EEG Monitoring Using Radiotelemetry System in Mice. Journal of Visualized Experiments. (132), e56831 (2018).
  41. Jiang, Y., et al. Abnormal hippocampal functional network and related memory impairment in pilocarpine-treated rats. Epilepsia. 59 (9), 1785-1795 (2018).
  42. Wang, L., Liu, Y. H., Huang, Y. G., Chen, L. W. Time-course of neuronal death in the mouse pilocarpine model of chronic epilepsy using Fluoro-Jade C staining. Brain Research. 1241, 157-167 (2008).
  43. Detour, J., Schroeder, H., Desor, D., Nehlig, A. A 5-month period of epilepsy impairs spatial memory, decreases anxiety, but spares object recognition in the lithium-pilocarpine model in adult rats. Epilepsia. 46 (4), 499-508 (2005).
  44. Benini, R., Longo, D., Biagini, G., Avoli, M. Perirhinal Cortex Hyperexcitability in Pilocarpine-Treated Epileptic Rats. Hippocampus. 21 (7), 702-713 (2011).
  45. Yassa, M. A., Stark, C. E. Pattern separation in the hippocampus. Trends in Neurosciences. 34 (10), 515-525 (2011).
  46. Goncalves, J. T., Schafer, S. T., Gage, F. H. Adult Neurogenesis in the Hippocampus: From Stem Cells to Behavior. Cell. 167 (4), 897-914 (2016).
  47. Sahay, A., et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 472 (7344), 466-539 (2011).

Play Video

Citar este artigo
Park, K., Kim, J., Choi, I., Cho, K. Assessment of Memory Function in Pilocarpine-induced Epileptic Mice. J. Vis. Exp. (160), e60751, doi:10.3791/60751 (2020).

View Video