Summary

兔动脉袋显微外科分叉动脉瘤模型

Published: May 14, 2020
doi:

Summary

开发和测试用于颅内动脉瘤治疗的血管内装置仍然非常重要。今天使用的大多数动脉瘤模型都忽略了动脉退行性壁的重要特征或真正分叉的血液动力学。因此,我们设计了一种新型的兔动脉袋分岔模型。

Abstract

颅内动脉瘤的血管内治疗在过去几十年中变得越来越重要,因此对测试血管内装置的需求增加。高度有必要使用符合流变学、血流动力学和动脉瘤壁条件的动物模型。因此,本研究的目的是设计一种新的标准化和可重复的手术技术,以在兔子中产生具有未修饰和修饰壁条件的自体动脉袋分叉动脉瘤。

分叉动脉瘤是通过左颈总动脉右侧吻合术产生的,两者都是显微外科缝合的动脉袋的母动脉。从右颈总动脉近端取出移植物,用于对照组(n = 7,立即自体再植入)或修饰组(n = 7,与100个国际单位弹性蛋白酶一起孵育20分钟,自体再植入)组。创建后立即通过荧光血管造影控制袋和母动脉通畅性。在随访(28天)时,所有兔子都接受了造影剂增强磁共振血管造影和荧光血管造影,然后进行动脉瘤收获,宏观和组织学评估。

共有16只雌性新西兰白兔作。两只动物过早死亡。在随访时,85.72%的动脉瘤仍然是专利。两组都显示动脉瘤大小随着时间的推移而增加;对照组(创建时为6.48±1.81 mm3 ,随访时为19.85±6.40 mm3 ,p = 0.037),这比修饰组(创建时为8.03±1.08 mm3 ,随访时为20.29±6.16 mm3 )更为明显,p = 0.054)。

我们的研究结果表明,这种新的兔子模型是充分的,它允许在显微外科方法中创建具有不同壁条件的分叉动脉瘤。鉴于良好的长期通畅性和动脉瘤随时间推移生长的特性,该模型可作为新型血管内疗法临床前评估的重要工具。

Introduction

颅内动脉瘤 (IA) 破裂引起的蛛网膜下腔出血可通过血管内或显微外科闭塞技术有效控制1234。不同的血管内疗法,克服盘绕后IA复发的主要局限性,在过去几十年中变得越来越重要,导致对测试血管内装置的需求增加。为了测试这些新的治疗方法,高度需要尊重流变学特性,血流动力学和动脉瘤壁条件的适当动物模型567。在这种情况下,临床和临床前研究已经揭示了动脉瘤壁疾病对动脉瘤破裂和闭塞后复发的重要作用,特别关注壁细胞的丧失789

到目前为止,兔子的实验性动脉瘤通常是通过弹性蛋白酶孵育的颈总动脉(CCA)残端或缝合成人工CCA分叉的静脉袋产生的。10111213141516 因此,从未描述过真正的动脉袋分叉模型。

本研究的目的是设计一种安全,快速和标准化的技术,用于在兔子模型中创建具有不同壁条件的分叉动脉瘤的显微外科手术(图1)。这是通过将未修饰和修饰的动脉袋缝合到两个CCA的人工分叉中来实现的。

Protocol

所有兽医护理均按照机构指南进行(所有实验均由瑞士伯尔尼州动物护理地方委员会批准(BE 108/16)),并在董事会认证的兽医麻醉师的监督下进行。17,18严格遵守了ARR指南和3R原则。 注意:将所有动物饲养在 22\u201224 摄氏度 (°C) 的室温下,并保持 12 小时 (h) 的亮/暗循环。每次都提供免费的水,颗粒和随意的干草饮食。使?…

Representative Results

在由七只动物组成的试点系列之后,共有16只动物被纳入实验方案。两只动物过早死亡,因此被排除在最终分析之外(死亡率为12.5%)。在14只动物身上计算,对照组和修饰组在荧光血管造影过程中的即时动脉瘤通畅率为71.43%。四个动脉瘤必须通过连续的血栓清宫重新打开,并且在重复荧光血管造影后,所有病例都有记录的通畅性(100%)。MR和荧光血管造影组的动脉瘤通畅率为85.72%,28天后随访时?…

Discussion

我们的研究证明了在兔子中建立具有不同壁条件的真正分叉动脉瘤模型的可行性。总体而言,该研究纳入了14只平均体重为3.7±0.09 kg,平均年龄为112±3天的新西兰大白兔。85.72%的动脉瘤在28天的随访期间保持专利。两只动物过早死亡(死亡率为12.5%)。

先前的研究建议使用多种颅外动脉瘤模型来分析血管内动脉瘤治疗的管理2526

Declarações

The authors have nothing to disclose.

Acknowledgements

作者感谢Olgica Beslac和Kay Nettelbeck在围手术期的出色支持和技术援助,以及Alessandra Bergadano,DVM,PhD,PhD对长期动物健康的专门监督。

Materials

3-0 resorbable suture Ethicon Inc., USA VCP428G
4-0 non-absorbable suture B. Braun, Germany G0762563
6-0 non-absorbable suture B. Braun, Germany C0766070
9-0 non-absorbable suture B. Braun, Germany G1111140
Adrenaline Amino AG 1445419 any generic
Amiodarone Helvepharm AG 5078567 any generic
Anesthesia machine Dräger any other
Aspirin Sanofi-Aventis (Suisse) SA 622693 any generic
Atropine Labatec Pharma SA 6577083 any generic
Bandpass filter blue Thorlabs FD1B any other
Bandpass filter green Thorlabs FGV9 any other
Bipolar forceps any other
Bicycle spotlight any other
Biemer vessel clip (2 x) B. Braun Medical AG, Aesculap, Switzerland FD560R temporary
Bispectral index (neonatal) any other
Blood pressure cuff (neonatal) any other
Clamoxyl GlaxoSmithKline AG 758808 any generic
Dexmedetomidine Ever Pharma 136740-1 any generic
Electrocardiogram electrodes any other
Elastase Sigma Aldrich 45125 any generic
Ephedrine Amino AG 1435734 any generic
Esmolol OrPha Swiss GmbH 3284044 any generic
Fentanyl (intravenous use) Janssen-Cilag AG 98683 any generic
Fentanyl (transdermal) Mepha Pharma AG 4008286 any generic
Fluoresceine Curatis AG 5030376 any generic
Fragmin Pfizer PFE Switzerland GmbH 1906725 any generic
Glyco any generic
Heating pad any other
Isotonic sodium chloride solution (0.9%) Fresenius KABI 336769 any generic
Ketamine Pfizer 342261 any generic
Laboratory shaker Stuart SRT6 any other
Lidocaine Streuli Pharma AG 747466 any generic
Longuettes any other
Metacam Boehringer Ingelheim P7626406 any generic
Methadone Streuli Pharma AG 1084546 any generic
Microtubes any other
Micro needle holder any other
Midazolam Accord Healthcare AG 7752484 any generic
Needle holder any other
O2-Face mask any other
Operation microscope Wild Heerbrugg any other
Papaverine Bichsel any generic
Prilocaine-lidocaine creme Emla any generic
Propofol B. Braun Medical AG, Switzerland any generic
Pulse oxymeter any generic
Rectal temperature probe (neonatal) any other
Ropivacaine Aspen Pharma Schweiz GmbH 1882249 any generic
Scalpell Swann-Morton 210 any other
Small animal shaver any other
Smartphone any other
Soft tissue forceps any other
Soft tissue spreader any other
Stainless steel sponge bowls any other
Sterile micro swabs any other
Stethoscope any other
Straight and curved micro-forceps any other
Straight and curved micro-scissors any other
Straight and curved forceps any other
Surgery drape any other
Surgical scissors any other
Syringes 1 ml, 2ml and 5 ml any other
Tris-Buffer Sigma Aldrich 93302 any generic
Vascular clip applicator B. Braun, Germany FT495T
Vein and arterial catheter 22 G any generic
Vitarubin Streuli Pharma AG 6847559 any generic
Yasargil titan standard clip (2 x) B. Braun Medical AG, Aesculap, Switzerland FT242T temporary

Referências

  1. Wanderer, S., Mrosek, J., Gessler, F., Seifert, V., Konczalla, J. Vasomodulatory effects of the angiotensin II type 1 receptor antagonist losartan on experimentally induced cerebral vasospasm after subarachnoid haemorrhage. Acta Neurochirurgica (Wien). 160 (2), 277-284 (2018).
  2. Vatter, H., et al. Effect of delayed cerebral vasospasm on cerebrovascular endothelin A receptor expression and function. Journal of Neurosurgery. 107 (1), 121-127 (2007).
  3. Andereggen, L., et al. The role of microclot formation in an acute subarachnoid hemorrhage model in the rabbit. Biomed Research International. , 161702 (2014).
  4. Eriksen, N., et al. Early focal brain injury after subarachnoid hemorrhage correlates with spreading depolarizations. Neurology. 92 (4), 326-341 (2019).
  5. Thompson, J. W., et al. In vivo cerebral aneurysm models. Neurosurgical Focus. 47 (1), 20 (2019).
  6. Bouzeghrane, F., Naggara, O., Kallmes, D. F., Berenstein, A., Raymond, J. International Consortium of Neuroendovascular C. In vivo experimental intracranial aneurysm models: a systematic review. American Journal of Neuroradiology. 31 (3), 418-423 (2010).
  7. Marbacher, S., et al. Loss of mural cells leads to wall degeneration, aneurysm growth, and eventual rupture in a rat aneurysm model. Stroke. 45 (1), 248-254 (2014).
  8. Marbacher, S., et al. Intraluminal cell transplantation prevents growth and rupture in a model of rupture-prone saccular aneurysms. Stroke. 45 (12), 3684-3690 (2014).
  9. Marbacher, S., Niemela, M., Hernesniemi, J., Frosen, J. Recurrence of endovascularly and microsurgically treated intracranial aneurysms-review of the putative role of aneurysm wall biology. Neurosurgical Review. 42 (1), 49-58 (2019).
  10. Marbacher, S., et al. Complex bilobular, bisaccular, and broad-neck microsurgical aneurysm formation in the rabbit bifurcation model for the study of upcoming endovascular techniques. American Journal of Neuroradiology. 32 (4), 772-777 (2011).
  11. Marbacher, S., et al. Long-term patency of complex bilobular, bisaccular, and broad-neck aneurysms in the rabbit microsurgical venous pouch bifurcation model. Neurological Research. 34 (6), 538-546 (2012).
  12. Sherif, C., Marbacher, S., Erhardt, S., Fandino, J. Improved microsurgical creation of venous pouch arterial bifurcation aneurysms in rabbits. American Journal of Neuroradiology. 32 (1), 165-169 (2011).
  13. Sherif, C., et al. Microsurgical venous pouch arterial-bifurcation aneurysms in the rabbit model: technical aspects. Journal of Visualized Experiments. 51, 2718 (2011).
  14. Brinjikji, W., Ding, Y. H., Kallmes, D. F., Kadirvel, R. From bench to bedside: utility of the rabbit elastase aneurysm model in preclinical studies of intracranial aneurysm treatment. Journal of Neurointerventional Surgery. 8 (5), 521-525 (2016).
  15. Miskolczi, L., Guterman, L. R., Flaherty, J. D., Hopkins, L. N. Saccular aneurysm induction by elastase digestion of the arterial wall: a new animal model. Neurosurgery. 43 (3), 595-600 (1998).
  16. Lewis, D. A., et al. Morbidity and mortality associated with creation of elastase-induced saccular aneurysms in a rabbit model. American Journal of Neuroradiology. 30 (1), 91-94 (2009).
  17. Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M., Altman, D. G. Group NCRRGW. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Journal of Cerebral Blood Flow and Metabolism. 31 (4), 991-993 (2011).
  18. Tornqvist, E., Annas, A., Granath, B., Jalkesten, E., Cotgreave, I., Oberg, M. Strategic focus on 3R principles reveals major reductions in the use of animals in pharmaceutical toxicity testing. PLoS One. 9 (7), (2019).
  19. Irlbeck, T., Zwissler, B., Bauer, A. ASA classification: Transition in the course of time and depiction in the literature]. Der Anaesthesist. 66 (1), 5-10 (2017).
  20. Grüter, B. E., et al. Fluorescence Video Angiography for Evaluation of Dynamic Perfusion Status in an Aneurysm Preclinical Experimental Setting. Oper Neurosurg (Hagerstown). 17 (4), 432-438 (2019).
  21. Grüter, B. E., et al. Testing bioresorbable stent feasibility in a rat aneurysm model. Journal of Neurointerventional Surgery. 11 (10), 1050-1054 (2019).
  22. Strange, F., et al. Fluorescence Angiography for Evaluation of Aneurysm Perfusion and Parent Artery Patency in Rat and Rabbit Aneurysm Models. Journal of Visualized Experiments. (149), e59782 (2019).
  23. Weaver, L. A., Blaze, C. A., Linder, D. E., Andrutis, K. A., Karas, A. Z. A model for clinical evaluation of perioperative analgesia in rabbits (Oryctolagus cuniculus). Journal of the American Association of Laboratory Animal Science. 49 (6), 845-851 (2010).
  24. ACLAM Task Force Members. Public statement: guidelines for the assessment and management of pain in rodents and rabbits. Journal of the American Association of Laboratory Animal Science. 46 (2), 97-108 (2007).
  25. Forrest, M. D., O’Reilly, G. V. Production of experimental aneurysms at a surgically created arterial bifurcation. American Journal of Neuroradiology. 10 (2), 400-402 (1989).
  26. Kwan, E. S., Heilman, C. B., Roth, P. A. Endovascular packing of carotid bifurcation aneurysm with polyester fiber-coated platinum coils in a rabbit model. American Journal of Neuroradiology. 14 (2), 323-333 (1993).
  27. Spetzger, U., Reul, J., Weis, J., Bertalanffy, H., Thron, A., Gilsbach, J. M. Microsurgically produced bifurcation aneurysms in a rabbit model for endovascular coil embolization. Journal of Neurosurgery. 85 (3), 488-495 (1996).
  28. Bavinzski, G., et al. Experimental bifurcation aneurysm: a model for in vivo evaluation of endovascular techniques. Minimal Invasive Neurosurgery. 41 (3), 129-132 (1998).
  29. Marbacher, S., Marjamaa, J., Abdelhameed, E., Hernesniemi, J., Niemela, M., Frosen, J. The Helsinki rat microsurgical sidewall aneurysm model. Journal of Viusalized Experiments. (92), e51071 (2014).
  30. Alfano, J. M., et al. Intracranial aneurysms occur more frequently at bifurcation sites that typically experience higher hemodynamic stresses. Neurosurgery. 73 (3), 497-505 (2013).
  31. Sakamoto, S., et al. Characteristics of aneurysms of the internal carotid artery bifurcation. Acta Neurochirurgica (Wien). 148 (2), 139-143 (2006).
  32. Dai, D., et al. Histopathologic and immunohistochemical comparison of human, rabbit, and swine aneurysms embolized with platinum coils. American Journal of Neuroradiology. 26 (10), 2560-2568 (2005).
  33. Shin, Y. S., Niimi, Y., Yoshino, Y., Song, J. K., Silane, M. Berenstein A. Creation of four experimental aneurysms with different hemodynamics in one dog. American Journal of Neuroradiology. 26 (7), 1764-1767 (2005).
  34. Abruzzo, T., Shengelaia, G. G., Dawson, R. C., Owens, D. S., Cawley, C. M., Gravanis, M. B. Histologic and morphologic comparison of experimental aneurysms with human intracranial aneurysms. American Journal of Neuroradiology. 19 (7), 1309-1314 (1998).
  35. Spetzger, U., Reul, J., Weis, J., Bertalanffy, H., Gilsbach, J. M. Endovascular coil embolization of microsurgically produced experimental bifurcation aneurysms in rabbits. Surgical Neurology. 49 (5), 491-494 (1998).
  36. Reul, J., Weis, J., Spetzger, U., Konert, T., Fricke, C., Thron, A. Long-term angiographic and histopathologic findings in experimental aneurysms of the carotid bifurcation embolized with platinum and tungsten coils. American Journal of Neuroradiology. 18 (1), 35-42 (1997).
  37. Marbacher, S., Strange, F., Frosen, J., Fandino, J. Preclinical extracranial aneurysm models for the study and treatment of brain aneurysms: A systematic review. Journal of Cerebral Blood Flow and Metabolism. , (2020).
  38. Strange, F., Gruter, B. E., Fandino, J., Marbacher, S. Preclinical Intracranial Aneurysm Models: A Systematic Review. Brain Sciences. 10 (3), 134 (2020).
  39. Marbacher, S., Wanderer, S., Strange, F., Gruter, B. E., Fandino, J. Saccular Aneurysm Models Featuring Growth and Rupture: A Systematic Review. Brain Sciences. 10 (2), 101 (2020).
  40. Coluccia, D., et al. A microsurgical bifurcation rabbit model to investigate the effect of high-intensity focused ultrasound on aneurysms: a technical note. Journal of Therapeutic Ultrasound. 2, 21 (2014).
  41. Hoh, B. L., Rabinov, J. D., Pryor, J. C., Ogilvy, C. S. A modified technique for using elastase to create saccular aneurysms in animals that histologically and hemodynamically resemble aneurysms in human. Acta Neurochirurgica (Wien). 146 (7), 705-711 (2004).
  42. Morosanu, C. O., Nicolae, L., Moldovan, R., Farcasanu, A. S., Filip, G. A., Florian, I. S. Neurosurgical Cadaveric and In Vivo Large Animal Training Models for Cranial and Spinal Approaches and Techniques – Systematic Review of Current Literature. Neurologia i neurochirurgia polska. 53 (1), 8-17 (2019).
check_url/pt/61157?article_type=t

Play Video

Citar este artigo
Wanderer, S., Waltenspuel, C., Grüter, B. E., Strange, F., Sivanrupan, S., Remonda, L., Widmer, H. R., Casoni, D., Andereggen, L., Fandino, J., Marbacher, S. Arterial Pouch Microsurgical Bifurcation Aneurysm Model in the Rabbit. J. Vis. Exp. (159), e61157, doi:10.3791/61157 (2020).

View Video