Summary

通过质谱学研究蛋白质高阶结构,与二乙基碳酸酯共价标签

Published: June 15, 2021
doi:

Summary

介绍了在质谱检测中进行基于二乙基碳酸酯的共价贴标的实验程序。二甲基碳酸酯只是与感兴趣的蛋白质或蛋白质复合物混合,导致溶剂可获取氨基酸残留物的修饰。经蛋白解消化和液相色谱/质谱分析后,可识别修改后的残留物。

Abstract

描述蛋白质的更高阶结构对于理解其功能至关重要。质谱仪(MS)已成为这一目的的有力工具,尤其是对于传统方法难以研究的蛋白质系统。为了研究MS的蛋白质结构,在将蛋白质的结构信息编码到蛋白质质量的溶液中执行特定的化学反应。一个特别有效的方法是使用可共效地修改溶剂可访问氨基酸侧链的试剂。这些反应导致质量增加,当与蛋白解消化和串联质谱法相结合时,可以用残留水平分辨率进行局部化。在这里,我们描述与使用二乙基碳酸酯 (DEPC) 作为共价标记试剂以及 MS 检测相关的协议。DEPC 是一种高度电亲的分子,能够标记平均蛋白质中高达 30% 的残留物,从而提供出色的结构分辨率。DEPC 已与 MS 一起成功用于获取小单域蛋白质(如 β2 微球蛋白)到大型多域蛋白(如单克隆抗体)的结构信息。

Introduction

蛋白质是几乎所有生理过程中必不可少的生物分子。蛋白质所执行的各种功能是可能的,因为它们采用的结构和它们与其他生物分子的相互作用。为了更深入地了解蛋白质的功能,需要生化和生物物理工具来阐明这些重要的结构特征和相互作用。传统上,X射线晶体学、低温电子显微镜和核磁共振(NMR)光谱学为揭示蛋白质结构提供了所需的原子级细节。然而,由于结晶行为不良、蛋白质可用性有限、样品异质性过大或分子重量限制,许多蛋白质系统无法通过这些技术进行审问。因此,出现了克服这些限制的较新的分析方法。提供蛋白质结构信息的新兴技术包括质谱法。

质谱测量 (MS) 测量分子的质量对电荷 (m/z) 比率,因此必须通过将所需的结构信息编码到蛋白质的质量中来获取蛋白质高阶结构信息。已开发出几种编码这些信息的方法,包括氢-铀交换(HDX)1、2、3、4、化学交联(XL)5、6和共价标签(CL)7、8、9、10。在HDX中,骨干氢气的交换量略大,取决于溶剂的可及性和H-粘结程度。HDX的范围可以通过快速消化蛋白质到肽碎片,然后通过质谱仪分离和测量这些片段,或通过自上而下的实验分离蛋白质来本地化。确定汇率有助于进一步深入了解蛋白质动态。HDX 已被证明是一个有价值的工具,用于描述蛋白质结构,尽管与背部交换相关的挑战和需要专门设备,以最大限度地提高可重复性。在 XL-MS 中,蛋白质与双功能试剂发生反应,双功能试剂可共价地将给定蛋白质内或两种蛋白质之间的相邻残留侧链连接起来。这样,XL-MS 可以提供可用于描述蛋白质结构的距离限制。蛋白质相互连接的区域可以通过蛋白质分析消化和液相色谱(LC)-MS分析来识别。虽然 XL-MS 是一种多功能工具,用于研究各种蛋白质复合物(包括细胞内部),但 XL 产品的识别具有挑战性,需要专门的软件。

CL-MS最近已成为一种补充性的,有时是替代基于MS的工具,研究蛋白质结构和相互作用。在CL-MS中,蛋白质或蛋白质复合物与单功能试剂共效修改,可与溶剂暴露的侧链(图1)做出反应。通过比较不同条件下蛋白质或蛋白质复合物的修改范围,可以揭示出构象变化、结合位点和蛋白质-蛋白质接口。CL反应后,通常位于单一氨基酸水平的站点特定信息可以通过典型的自下而上的蛋白质组学工作流程获得,其中蛋白质被蛋白质蛋白解消化,肽片段由LC分离,并且使用串联MS(MS/MS)识别修改后的位点。丰富的生物结合化学历史为CL-MS实验提供了许多试剂。CL 试剂分为两个一般类别:(一) 特定和 (ii) 非特定。特定试剂与单个功能组(如免费胺)8、10反应,易于实现,但往往提供有限的结构信息。非特异性试剂与各种侧链发生反应,但通常需要激光或同步加速器源等专门设备才能产生这些高度反应的物种。羟基基是最常用的非特异性试剂,已应用于羟基基足迹(HRF)7、11、12、13实验,研究各种条件下的各种蛋白质和蛋白质复合物。

我们的研究小组在CL-MS实验14、15、16、17、18、19、20、21、22、23、24、25的背景下,成功地使用了另一种相对非特异性试剂,称为二乙基碳酸酯(DEPC)来研究蛋白质结构和相互作用。DEPC 提供特定标签试剂的简单性(即无需任何专门设备来执行反应),同时对普通蛋白质中高达 30% 的氨基酸做出反应。作为一种高度电效试剂,DEPC 能够与 N 端和西施泰因、西斯蒂丁、赖氨酸、酪氨酸、血清和三氨酸残留物的核亲侧链做出反应。通常,产生这些反应的单个产品,导致质量增加 72.02 Da。这种单一类型的产品与多达55种不同的产品形成对比,当蛋白质与羟基反应时,这些产品可以产生7种。这种简单的化学成分有助于识别标记的地点。

在这里,我们提供使用基于DEPC的CL-MS来研究蛋白质结构和相互作用的协议。详细介绍了与试剂制备、DEPC-蛋白质反应、蛋白质消化条件、LC-MS 和 MS/MS 参数以及数据分析相关的详细信息。我们还通过提供蛋白质金属、蛋白质-脂和蛋白质-蛋白质相互作用以及加热后发生结构变化的蛋白质提供示例结果,来证明DEPC标签的效用。

Protocol

1. 蛋白质和试剂制剂 注:此协议包括一个用 DEPC 标记蛋白质的示例工作流。列出的某些条件和试剂浓度可能因所选蛋白质而异。 在 1.5 mL 微中福格管中准备所有试剂解决方案。 在pH 7.4的10mM 3-(N-莫索利诺)丙烷磺酸(MOPS)缓冲器中,准备一种所需的浓度蛋白质溶液,通常在数十微米范围内。或者,如果样品中含有与DEPC有反应的核嗜血缓冲液,则用10mm pH 7.4 MOP…

Representative Results

识别 DEPC 修改站点和修改百分比由于共价标签而增加的质量可以测量在 (a) 完整的蛋白质和 (b) 肽水平8,9。在完好无损的水平上,可以通过直接分析或贴有标签的蛋白质样本的LC-MS获得具有不同标签数的蛋白质物种的分布。要获得更高的分辨率结构信息(即特定于站点的标记数据),必须在肽级别进行测量。在标记和淬火步骤之后,标记…

Discussion

关键步骤
应考虑有关实验设计的若干点,以确保可靠的标记结果。首先,为了最大限度地提高蛋白质标签,有必要避免缓冲具有强烈核嗜血组(如Tris),因为它们可以与DEPC发生反应并降低标签的程度。也可以想象,这种缓冲器可能与标记的残留物发生反应,导致标签被移除,从而丢失结构信息。我们建议MOPS作为缓冲,但磷酸盐缓冲盐水也有效。其次,应避免使用二硫化物来减少二硫化…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者感谢国家卫生研究院(NIH)在格兰特R01转基因075092下的支持。用于获取此处描述的一些数据的温度轨道拉普融合质谱仪是从国家卫生研究院赠款 S10OD010645 获得的资金。

Materials

1.5 mL microcentrifuge tube Thermo Fisher Scientific 3448
3-(N-morpholino)propanesulfonic acid Millipore Sigma M1254
3-(N-morpholino)propanesulfonic acid sodium salt Millipore Sigma M9381
Acclaim PepMap RSLC C18 Column Thermo Scientific 164537 300 μm x 15 cm, C18, 2 μm, 100 A
Acetonitrile Fisher Scientific A998-1
Diethylpyrocarbonate Millipore Sigma D5758
HPLC-grade water Fisher Scientific W5-1
Imidazole Millipore Sigma I5513
Immobilized chymotrypsin ProteoChem g4105
Immobilized trypsin, TPCK Treated Thermo Fisher Scientific 20230
Iodoacetamide Millipore Sigma I1149
Tris(2-carboxyethyl)phosphine Millipore Sigma C4706

Referências

  1. Katta, V., Chait, B. T., Carr, S. Conformational Changes in Proteins Probed by Hydrogen-exchange Electrospray-ionization. Rapid Communications in Mass Spectrometry. 5, 214-217 (1991).
  2. Wales, T. E., Engen, J. R. Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrometry Reviews. 25, 158-170 (2006).
  3. Pirrone, G. F., Iacob, R. E., Engen, J. R. Applications of hydrogen/deuterium exchange MS from 2012 to 2014. Analytical Chemistry. 87, 99-118 (2015).
  4. Oganesyan, I., Lento, C., Wilson, D. J. Contemporary hydrogen deuterium exchange mass spectrometry. Methods. 144, 27-42 (2018).
  5. Sinz, A. Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions. Mass Spectrometry Reviews. 25, 663-682 (2006).
  6. Holding, A. N. XL-MS: Protein cross-linking coupled with mass spectrometry. Methods. 89, 54-63 (2015).
  7. Xu, G., Chance, M. R. Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chemical Reviews. 107, 3514-3543 (2007).
  8. Mendoza, V. L., Vachet, R. W. Probing Protein Structure by Amino Acid-Specific Covalent Labeling and Mass Spectrometry. Mass Spectrometry Reviews. 28, 785-815 (2009).
  9. Limpikirati, P., Liu, T., Vachet, R. W. Covalent labeling-mass spectrometry with non-specific reagents for studying protein structure and interactions. Methods. 144, 79-93 (2018).
  10. Liu, X. R., Zhang, M. M., Gross, M. L. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chemistry Reviews. 120, 4335 (2020).
  11. Maleknia, S. D., Brenowitz, M., Chance, M. R. Millisecond radiolytic modification of peptides by synchrotron X-rays identified by mass spectrometry. Analytical Chemistry. 71, 3965-3973 (1999).
  12. Aye, T. T., Low, T. Y., Sze, S. K. Nanosecond laser-induced photochemical oxidation method for protein surface mapping with mass spectrometry. Analytical Chemistry. 77, 5814-5822 (2005).
  13. Hambly, D. M., Gross, M. L. Laser flash photolysis of hydrogen peroxide to oxidize protein solvent-accessible residues on the microsecond timescale. Journal of the American Society of Mass Spectrometry. 16, 2057-2063 (2005).
  14. Mendoza, V. L., Vachet, R. W. Protein surface mapping using diethylpyrocarbonate with mass spectrometric detection. Analytical Chemistry. 80, 2895-2904 (2008).
  15. Mendoza, V. L., Antwi, K., Barón-rodríguez, M. A., Blanco, C., Vachet, R. W. Structure of the Pre-amyloid Dimer of β-2-microglobulin from Covalent Labeling and Mass Spectrometry. Bioquímica. 49, 1522-1532 (2010).
  16. Mendoza, V. L., Barón-Rodríguez, M. A., Blanco, C., Vachet, R. W. Structural insights into the pre-amyloid tetramer of β-2-microglobulin from covalent labeling and mass spectrometry. Bioquímica. 50, 6711-6722 (2011).
  17. Zhou, Y., Vachet, R. W. Increased protein structural resolution from diethylpyrocarbonate-based covalent labeling and mass spectrometric detection. Journal of the American Society of Mass Spectrometry. 23, 708-717 (2012).
  18. Borotto, N. B., et al. Investigating Therapeutic Protein Structure with Diethylpyrocarbonate Labeling and Mass Spectrometry. Analytical Chemistry. 87, 10627-10634 (2015).
  19. Liu, T., Marcinko, T. M., Kiefer, P. A., Vachet, R. W. Using Covalent Labeling and Mass Spectrometry To Study Protein Binding Sites of Amyloid Inhibiting Molecules. Analytical Chemistry. 89, 11583-11591 (2017).
  20. Limpikirati, P., et al. Covalent labeling and mass spectrometry reveal subtle higher order structural changes for antibody therapeutics. MAbs. 11, 463-476 (2019).
  21. Limpikirati, P., Pan, X., Vachet, R. W. Covalent Labeling with Diethylpyrocarbonate: Sensitive to the Residue Microenvironment, Providing Improved Analysis of Protein Higher Order Structure by Mass Spectrometry. Analytical Chemistry. 91, 8516-8523 (2019).
  22. Liu, T., Limpikirati, P., Vachet, R. W. Synergistic Structural Information from Covalent Labeling and Hydrogen-Deuterium Exchange Mass Spectrometry for Protein-Ligand Interactions. Analytical Chemistry. 91, 15248-15254 (2019).
  23. Pan, X., Limpikirati, P., Chen, H., Liu, T., Vachet, R. W. Higher-Order Structure Influences the Kinetics of Diethylpyrocarbonate Covalent Labeling of Proteins. Journal of the American Society of Mass Spectrometry. 31, 658-665 (2020).
  24. Limpikirati, P. K., Zhao, B., Pan, X., Eyles, S. J., Vachet, R. W. Covalent Labeling/Mass Spectrometry of Monoclonal Antibodies with Diethylpyrocarbonate: Reaction Kinetics for Ensuring Protein Structural Integrity. Journal of the American Society of Mass Spectrometry. 31, 1223-1232 (2020).
  25. Liu, T., Marcinko, T. M., Vachet, R. W. Protein-Ligand Affinity Determinations Using Covalent Labeling-Mass Spectrometry. Journal of the American Society of Mass Spectrometry. 31, 1544-1553 (2020).
  26. Srikanth, R., Mendoza, V. L., Bridgewater, J. D., Zhang, G., Vachet, R. W. Copper Binding to β-2-Microglobulin and its Pre-Amyloid Oligomers. Bioquímica. 48, 9871-9881 (2009).
  27. Lim, J., Vachet, R. W. Using mass spectrometry to study copper-protein binding under native and non-native conditions: β-2-microglobulin. Analytical Chemistry. 76, 3498-3504 (2004).
  28. Lindsley, C. W. Predictions and Statistics for the Best-Selling Drugs Globally and in the United States in 2018 and a Look Forward to 2024 Projections. ACS Chemical Neuroscience. 10, 1115 (2019).
  29. Floege, J., Ketteler, M. β2-Microglobulin-derived amyloidosis: An update. Kidney International. 59, 164 (2001).
  30. Antwi, K., et al. Cu (II) organizes β-2-microglobulin oligomers but is released upon amyloid formation. Protein Science. 17, 748-759 (2008).
  31. Dong, J., et al. Unique Effect of Cu(II) in the Metal-Induced Amyloid Formation of β-2-Microglobulin. Bioquímica. 53, 1263-1274 (2014).
  32. Marcinko, T. M., Drews, T., Liu, T., Vachet, R. W. Epigallocatechin-3-gallate Inhibits Cu(II)-Induced β-2-Microglobulin Amyloid Formation by Binding to the Edge of Its β-Sheets. Bioquímica. 59, 1093-1103 (2020).
  33. Zhou, Y., Vachet, R. W. Diethylpyrocarbonate Labeling for the Structural Analysis of Proteins: Label Scrambling in Solution and How to Avoid it. Journal of the American Society of Mass Spectrometry. 23, 899-907 (2012).
  34. Borotto, N. B., Degraan-Weber, N., Zhou, Y., Vachet, R. W. Label scrambling during CID of covalently labeled peptide ions. Journal of the American Society of Mass Spectrometry. 25, 1739-1746 (2014).
  35. Aprahamian, M. L., Chea, E. E., Jones, L. M., Lindert, S. Rosetta Protein Structure Prediction from Hydroxyl Radical Protein Footprinting Mass Spectrometry Data. Analytical Chemistry. 90, 7721-7729 (2018).
  36. Schmidt, C., et al. Surface Accessibility and Dynamics of Macromolecular Assemblies Probed by Covalent Labeling Mass Spectrometry and Integrative Modeling. Analytical Chemistry. 89, 1459-1468 (2017).
  37. Zheng, X., Wintrode, P. L., Chance, M. R. Complementary Structural Mass Spectrometry Techniques Reveal Local Dynamics in Functionally Important Regions of a Metastable Serpin. Structure. 16, 38-51 (2008).
  38. Pan, Y., Piyadasa, H., O’Neil, J. D., Konermann, L. Conformational dynamics of a membrane transport protein probed by H/D exchange and covalent labeling: The glycerol facilitator. Journal of Molecular Biology. 416, 400-413 (2012).
  39. Li, J., et al. Mapping the Energetic Epitope of an Antibody/Interleukin-23 Interaction with Hydrogen/Deuterium Exchange, Fast Photochemical Oxidation of Proteins Mass Spectrometry, and Alanine Shave Mutagenesis. Analytical Chemistry. 89, 2250-2258 (2017).
  40. Borotto, N. B., Zhang, Z., Dong, J., Burant, B., Vachet, R. W. Increased β-Sheet Dynamics and D-E Loop Repositioning Are Necessary for Cu(II)-Induced Amyloid Formation by β-2-Microglobulin. Bioquímica. 56, 1095-1104 (2017).
  41. Shi, L., Liu, T., Gross, M. L., Huang, Y. Recognition of Human IgG1 by Fcγ Receptors: Structural Insights from Hydrogen-Deuterium Exchange and Fast Photochemical Oxidation of Proteins Coupled with Mass Spectrometry. Bioquímica. 58, 1074-1080 (2019).
  42. Gerega, S. K., Downard, K. M. PROXIMO – A new docking algorithm to model protein complexes using data from radical probe mass spectrometry (RP-MS). Bioinformatics. 22, 1702-1709 (2006).
  43. Kamal, J. K. A., Chance, M. R. Modeling of protein binary complexes using structural mass spectrometry data. Protein Science. 17, 79-94 (2007).
check_url/pt/61983?article_type=t

Play Video

Citar este artigo
Kirsch, Z. J., Arden, B. G., Vachet, R. W., Limpikirati, P. Covalent Labeling with Diethylpyrocarbonate for Studying Protein Higher-Order Structure by Mass Spectrometry. J. Vis. Exp. (172), e61983, doi:10.3791/61983 (2021).

View Video