Summary

मानव प्लुरिपोटेंट स्टेम कोशिकाओं से हेमोजेनिक एंडोथेलियल कोशिकाओं का निर्देशित भेदभाव

Published: March 31, 2021
doi:

Summary

यहां प्रस्तुत लगभग 1 सप्ताह में मानव प्लुरिपोटेंट स्टेम कोशिकाओं से हेमोजेनिक एंडोथेलियल कोशिकाओं के निर्देशित भेदभाव के लिए एक सरल प्रोटोकॉल है।

Abstract

रक्त वाहिकाओं को शरीर के सभी ऊतकों के भीतर सर्वव्यापी रूप से वितरित किया जाता है और विभिन्न कार्य करते हैं। इस प्रकार, परिपक्व संवहनी एंडोथेलियल कोशिकाओं की व्युत्पत्ति, जो मानव प्लुरिपोटेंट स्टेम कोशिकाओं से रक्त वाहिका लुमेन को पंक्तिबद्ध करती है, ऊतक इंजीनियरिंग और पुनर्जनन अनुप्रयोगों की भीड़ के लिए महत्वपूर्ण है। विवो में, आदिम एंडोथेलियल कोशिकाएं मेसोडर्मल वंश से ली जाती हैं और धमनी, शिरापरक, केशिका, हेमोजेनिक और लसीका सहित विशिष्ट उपप्रकारों की ओर निर्दिष्ट होती हैं। हेमोजेनिक एंडोथेलियल कोशिकाएं विशेष रुचि रखती हैं क्योंकि, विकास के दौरान, वे हेमटोपोइएटिक स्टेम और पूर्वज कोशिकाओं को जन्म देती हैं, जो तब जीवन भर सभी रक्त वंश उत्पन्न करती हैं। इस प्रकार, विट्रो में हेमोजेनिक एंडोथेलियल कोशिकाओं को उत्पन्न करने के लिए एक प्रणाली बनाने से एंडोथेलियल-टू-हेमटोपोइएटिक संक्रमण का अध्ययन करने का अवसर मिलेगा, और मानव रक्त उत्पादों के पूर्व विवो उत्पादन और मानव दाताओं पर निर्भरता कम हो सकती है। जबकि पूर्वज और आदिम एंडोथेलियल कोशिकाओं की व्युत्पत्ति के लिए कई प्रोटोकॉल मौजूद हैं, मानव स्टेम कोशिकाओं से अच्छी तरह से विशेषता वाले हेमोजेनिक एंडोथेलियल कोशिकाओं की पीढ़ी का वर्णन नहीं किया गया है। यहां, लगभग 1 सप्ताह में मानव भ्रूण स्टेम कोशिकाओं से हेमोजेनिक एंडोथेलियल कोशिकाओं की व्युत्पत्ति के लिए एक विधि प्रस्तुत की गई है: जीएसके 3ए अवरोधक (सीएचआईआर 99021) के जवाब में गठित आदिम लकीर कोशिकाओं के साथ एक भेदभाव प्रोटोकॉल, फिर बीएफजीएफ द्वारा मध्यस्थता मेसोडर्म वंश प्रेरण, इसके बाद बीएमपी 4 और वीईजीएफ-ए द्वारा प्रचारित आदिम एंडोथेलियल सेल विकास, और अंत में रेटिनोइक एसिड द्वारा प्रेरित हेमोजेनिक एंडोथेलियल सेल विनिर्देश। यह प्रोटोकॉल हेमोजेनिक एंडोथेलियल कोशिकाओं की एक अच्छी तरह से परिभाषित आबादी पैदा करता है जिसका उपयोग उनके आणविक विनियमन और एंडोथेलियल-टू-हेमटोपोइएटिक संक्रमण को समझने के लिए किया जा सकता है, जिसमें डाउनस्ट्रीम चिकित्सीय अनुप्रयोगों पर लागू होने की क्षमता है।

Introduction

एंडोथेलियल कोशिकाएं (ईसी) कोशिकाओं की एक विषम आबादी है जो पूरे मानव शरीर में और इंजीनियर ऊतकों में कई कार्य करती हैं। अन्य सेल प्रकारों (यानी, कार्डियोमायोसाइट्स1, ओस्टियोब्लास्टिक कोशिकाओं 2) का समर्थन और विनियमन करने के अलावा, इन कार्यों में रक्त औरऊतकों के बीच एक चयनात्मक बाधा बनाना और ऊतक निर्माण में सहायता करना शामिलहै। सामान्य विकास के दौरान परिपक्व ईसी के भेदभाव के लिए विविध सिग्नलिंग मार्गों की आवश्यकता होती है। आदिम ईसी मेसोडर्म पूर्वजों से प्राप्त होते हैं, और फिर परिपक्व धमनी, शिरापरक, केशिका और लसीका फेनोटाइप्स की ओर निर्दिष्ट होते हैं। इसके अतिरिक्त, एक्स्ट्राएम्ब्रायोनिक जर्दी थैली और भ्रूण महाधमनी-गोनाड-मेसोनेफ्रोस (एजीएम) क्षेत्र में ईसी का एक छोटा उप-समूह भी हेमोजेनिक ईसी बनने के लिए निर्दिष्ट किया जाता है, जो हेमटोपोइएटिक स्टेम और पूर्वज कोशिकाओं (एचएसपीसी) को जन्म देता है जो भ्रूण के यकृत और भ्रूण अस्थि मज्जा में स्थानांतरित होते हैं, जहां वे प्रसवोत्तर रहते हैं और पूरेजीवन में सभी रक्त कोशिका प्रकार उत्पन्न करते हैं। ईसी फेनोटाइप की विविध श्रेणी सभी ऊतक विकास और रखरखाव के लिए आवश्यक है।

इस प्रकार, ईसी और उनके डेरिवेटिव मानव विकास और / या बीमारी के साथ-साथ पुनर्योजी चिकित्सा और ऊतक इंजीनियरिंग अनुप्रयोगों 5,6,7,8 के मॉडलिंग और तंत्रको स्पष्ट करने के उद्देश्य से अध्ययन के महत्वपूर्ण घटक हैं। हालांकि, इस प्रकार के अध्ययनों के लिए मुख्य सीमा आवश्यक मात्रा में प्राथमिक मानव ईसी की उपलब्धता की कमी है। यह अनुमान लगाया गया है कि चिकित्सीय अनुप्रयोगों के बहुमत के लिए न्यूनतम 3 x 108 ईसी की आवश्यकताहोगी। इस समस्या को हल करने के लिए, मानव भ्रूण स्टेम सेल (एचईएससी) और मानव प्रेरित प्लुरिपोटेंट स्टेम सेल (एचआईपीएससी) का उपयोग उनकी विविध वंश क्षमता और बड़ी संख्या में संतान उत्पन्न करने की उनकी क्षमता के कारण प्रस्तावितकिया गया है

दरअसल, एचईएससी या एचआईपीएससी से प्राप्त कोशिकाओं की उपयोगिता रोग मॉडलिंग और दवा स्क्रीनिंग10,11,12 पर केंद्रित कई अध्ययनों में प्रदर्शित की गई है। ऑर्गन-ऑन-ए-चिप (ओओसी) तकनीक का उपयोग कोशिकाओं और ऊतकों को त्रि-आयामी मचानों में एकीकृत करके मानव शरीर के शरीर विज्ञान को अधिक ईमानदारी से पुन: व्यवस्थित करने के लिए किया गया है। इसके अलावा, कई अलग-अलग ओओसी (एक तथाकथित शरीर- या मानव-ऑन-ए-चिप, बीओसी / एचओसी) का कनेक्शन माइक्रोफ्लुइडिक्स के माध्यम से पूरा किया जा सकता है ताकि रुचि केअंगों के बीच क्रॉसस्टॉक की अनुमति मिल सके। सहायक ऊतक, जैसे वाहिका, ओओसी और बीओसी / एचओसी के महत्वपूर्ण घटक हैं; वास्कुलचर को शामिल करने से ऊतकों में पोषक तत्वों, ऑक्सीजन और पैराक्रिन कारकों के परिवहन की अनुमति मिलती है, जिससे आवश्यक ऊतक-विशिष्ट माइक्रोएन्वायरमेंट 3,12 को बढ़ावा मिलता है। इस प्रकार, परिपक्व मानव ईसी, जैसे धमनी, शिरापरक, लसीका और हेमोजेनिक ईसी प्राप्त करने के तरीके, इन ऊतक इंजीनियरिंग दृष्टिकोणों को आगे बढ़ाने के लिए महत्वपूर्ण हैं।

एचईएससी या एचआईपीएससी से मानव आदिम या पूर्वज ईसी की व्युत्पत्ति के लिए चरणों का विवरण देते हुए कई प्रोटोकॉल प्रकाशित किए गए हैं 5,16,17,18,19,20,21,22,23,24,25,26 . इनमें से कई प्रोटोकॉल भ्रूण शरीर (ईबी) गठन या स्ट्रोमल कोशिकाओं की मुराइन फीडर परत के साथ ईएससी / आईपीएससी के सह-संस्कृति पर भरोसा करते हैं। ये रणनीतियाँ कठिन और समय लेने वाली होती हैं, कम ईसी पैदावार और / या म्यूरिन कोशिकाओं के साथ मानव ईसी के संदूषण के साथ। प्रोटोकॉल जो स्ट्रोमल कोशिकाओं के उपयोग के बिना 2 डी संस्कृति पर सख्ती से भरोसा करते हैं, अक्सर लंबे प्रेरण की आवश्यकता होती है, प्रेरण के लिए विकास कारकों और / या अवरोधकों के जटिल संयोजन का उपयोग करते हैं, सेल पृथक्करण के बाद विस्तारित विस्तार अवधि होती है, या इन कारकों का संयोजन होता है। विवो में परिपक्व ईसी प्रकारों की व्युत्पत्ति में शामिल सिग्नलिंग मार्गों और कारकों के ज्ञान को आगे बढ़ाना एक सरल और मजबूत इन विट्रो भेदभाव प्रोटोकॉल के लिए आधार प्रदान करता है।

इससे पहले, विकास के दौरान क्रमशः मुराइन धमनी और हेमोजेनिक ईसी के विनिर्देश में नॉच और रेटिनोइक एसिड (आरए) सिग्नलिंग मार्गों के लिए महत्वपूर्ण भूमिकाओं की पहचान की गई थी। नॉच सिग्नलिंग मार्ग धमनी ईसी फेनोटाइप के विनिर्देश और रखरखाव में कई भूमिका निभाता है। मुराइन रेटिना वैस्कुलराइजेशन मॉडल का उपयोग करके काम ने एक मार्ग की पहचान की जिसमें द्रव कतरनी तनाव नॉच-सीएक्स 37-पी 27 सिग्नलिंग अक्ष को प्रेरित करता है, जी 1 सेल चक्र गिरफ्तारी को बढ़ावा देता है, जो धमनी ईसी विनिर्देश27 को सक्षम बनाता है। सेल चक्र राज्यों को अवसर की अलग-अलग खिड़कियां प्रदान करके सेल भाग्य निर्णयों में एक भूमिका निभाने की परिकल्पना की गई है जिसमें कोशिकाएं कुछ संकेतों के लिए ग्रहणशील होती हैं जो जीन अभिव्यक्ति और फेनोटाइपिकपरिवर्तनों को प्रेरित कर सकती हैं। इस नॉच-मध्यस्थता जी 1 गिरफ्तारी ने धमनी ईसी में समृद्ध जीन की अभिव्यक्ति को सक्षम किया, जिसमें एफ्रिन बी 2, सीएक्स 40, डीएलएल 4, नॉच 1 और नॉच 4 (29,30 में समीक्षा की गई) शामिल हैं। यह भी दिखाया गया है कि आरए सिग्नलिंग31,32 के माध्यम से विवो में हेमोजेनिक ईसी विनिर्देश को बढ़ावा दिया जाता है। अतिरिक्त अध्ययनों ने पहचान की कि, आरए सिग्नलिंग के डाउनस्ट्रीम, सी-किट और नॉच अपरेगुलेट पी 27 की अभिव्यक्ति, जो मुराइन जर्दी थैली और एजीएम33 में हेमोजेनिक विनिर्देश को सक्षम बनाता है। म्यूरिन हेमोजेनिक ईसी को एंडोथेलियल (यानी, सीडी 31, केडीआर) और हेमटोपोइएटिक (यानी, सी-किट, सीडी 34) मार्कर4 दोनों की अभिव्यक्ति द्वारा न्यूनतम रूप से पहचाना जा सकता है। अंत में, हेमोजेनिक ईसी एचएसपीसी बनाने के लिए एंडोथेलियल-टू-हेमटोपोइएटिक संक्रमण (ईएचटी) से गुजरते हैं, जो सभी रक्त कोशिकाप्रकारों 4,34,35 को जन्म दे सकता है

हाल के काम ने परीक्षण किया कि क्या यह एक ही सिग्नलिंग पदानुक्रम मानव हेमोजेनिक ईसी विनिर्देश को बढ़ावा दे सकता है। ऐसा करने के लिए, एचईएससी से हेमोजेनिक ईसी प्राप्त करने के लिए एक सीरम- और फीडर-मुक्त 2 डी कल्चर प्रोटोकॉल विकसित किया गया था, और इन हेमोजेनिक ईसी को सीडी 31 + केडीआर + सी-किट + सीडी 34 + वीई-कैडरिन-सीडी 45 के रूप में एकल सेल स्तर पर विशेषता दी गई थी। इस अध्ययन ने फ्लोरोसेंट सर्वव्यापी सेल चक्र संकेतक (एफयूसीसीआई) रिपोर्टर का भी लाभ उठाया, जो एच 9-एचईएससी का उपयोग करके विभिन्न सेल चक्र राज्यों की पहचान करता है जो एफयूसीसीआई रिपोर्टर निर्माण (एच 9-एफयूसीसीआई-एचईएससी) 36 को व्यक्त करते हैं। इन कोशिकाओं के साथ अध्ययन में, यह प्रदर्शित किया गया था कि आरए ईसी में प्रारंभिक जी 1 सेल चक्र गिरफ्तारी को बढ़ावा देता है, और प्रारंभिक जी 1 राज्य विट्रो37 में हेमोजेनिक विनिर्देश को सक्षम बनाता है। इसमें, इन मानव हेमोजेनिक एंडोथेलियल कोशिकाओं के भेदभाव के लिए एक विस्तृत प्रोटोकॉल और उनकी पहचान की पुष्टि करने वाले परख प्रदान किए गए हैं। यह सरल विधि मानव रक्त कोशिका विकास के तंत्र के भविष्य के अध्ययन के लिए ईसी के इस विशेष उप-समूह को उत्पन्न करने का एक उपयोगी साधन प्रदान करती है।

Protocol

1. अभिकर्मक और अभिकर्मक तैयारी नोट: अभिकर्मकों की एक सूची सामग्री की तालिका में प्रदान की गई है। मानव प्लुरिपोटेंट स्टेम सेल लाइनें प्राप्त करें: एच 1-एचईएससी, एच 9-फुकी-एचईएससी।नोट…

Representative Results

एचईएससी से आदिम ईसी और हेमोजेनिक ईसी के विनिर्देश को रेखांकित करने वाला एक योजनाबद्ध, और चढ़ाना के 24 घंटे बाद कोशिकाओं की एक प्रतिनिधि छवि चित्र 1 में दिखाई गई है। विनिर्देश के बाद, प्राइमर्ड…

Discussion

इसमें, एक मुराइन फीडर- और सीरम-मुक्त 2 डी संस्कृति प्रणाली (चित्रा 1) का उपयोग करके लगभग 1 सप्ताह में मानव भ्रूण स्टेम कोशिकाओं से हेमोजेनिक एंडोथेलियल कोशिकाओं के उत्पादन के चरणों को रेखांकित…

Disclosures

The authors have nothing to disclose.

Acknowledgements

यह काम एनआईएच अनुदान एचएल 128064 और यू 2ईबी017103 द्वारा आंशिक रूप से समर्थित था। सीटी इनोवेशन 15-आरएमबी-येल-04 अनुदान द्वारा आगे सहायता प्रदान की गई थी।

Materials

15 cm dishes Corning 430599 tissue culture treated
35 mm dishes Corning 430165 tissue culture treated
6-well plates Corning 3516 tissue culture treated
Antimicrobial reagent
Brand Name: Normocin
Invitrogen ant-nr-1
bFGF R&D systems 233-FB-025 use at 50 ng/mL
BMP4 BioLegend 595202 use at 25 ng/mL
Bovine Serum Albumin (BSA) Fisher Scientific BP1600-1
Cell Detatchment Solution
Brand Name: vAccutase
Stemcell Technologies 7920
Dimethyl Sulfoxide (DMSO) Sigma Aldrich D2650-100mL
Dispase Stemcell Technologies 7913
DLL4 R&D systems 1506-D4/CF recombinant human; use at 10 μg/mL
DMEM:F12 Gibco 11320-033
Dulbecco's Phosphate Buffered Saline (PBS) Gibco 14190144
Endothelial cell growth medium
Brand Name: EGM-2 Endothelial Cell Growth Medium-2 BulletKit (EGM-2)
Lonza CC-3162
FACS tubes Corning 352235 polystyrene round bottom with filter cap
Fetal Bovine Serum (FBS) Gemini Bio 100-106
Fibronectin ThermoFisher Scientific 33016015 use at 4 mg/cm2
GSK3i/CHIR99021 Stemgent 04-0004-02 10 mM stock; use at 5 μM
Hanks Balanced Salt Solution (HBSS) Gibco 14175-095
Hydrochloric Acid (HCl) Fisher Scientific A144S-500
Matrix protein 
Brand Name: Matrigel
Corning 356230 Growth factor reduced. Refer to the Certificate of Analysis for the lot to determine the protein (Matrigel) concentration. This concentration is required to calculate the volume of Matrigel that contains 1 mg of protein.
Methylcellulose-based medium
Brand Name: MethoCult H4435 Enriched
Stemcell Technologies 4435
Pluripotent stem cell differentiation medium
Brand Name: STEMdiff APEL 2
Stemcell Technologies 5270
Pluripotent stem cells: H1, H9, H9-FUCCI WiCell WA09 (H9), WA01 (H1) human; H9-FUCCI were obtained from Dr. Ludovic Vallier's lab at Cambridge Stem Cell Institute
Protein-Free Hybridoma Medium (PFMH) Gibco 12040077
Retinoic Acid Sigma Aldrich R2625-50mg use at 0.5 μM
Reverse transcription master mix
Brand Name: iScript Reverse Transcription Supermix
BioRad 1708840
RNA extraction kit
Brand Name: RNeasy Mini Kit
Qiagen 74104
Sodium Hydroxide (NaOH) Fisher Scientific SS255-1
Stem cell growth medium
Brand Name: mTeSR1
Stemcell Technologies 85850
SYBR Green master mix
Brand Name: iTaq Universal SYBR Green Master Mix
BioRad 1725121
Trypsin-EDTA Gibco 25299956 0.25%
VEGF165 (VEGF-A) PeproTech 100-20 use at 50 ng/mL
α-CD31-FITC BioLegend 303104 2 μg/mL*
α-CD34-Pacific Blue BioLegend 343512 2 μg/mL*
α-CD45-APC/Cy7 BioLegend 304014 2 μg/mL*
α-c-Kit-APC BioLegend 313206 2 μg/mL*
α-Flk-1-PE/Cy7 BioLegend 359911 2 μg/mL*
α-VE-Cadherin-PE BioLegend 348506 2 μg/mL*
* Antibody fluorescent conjugates should be optimized based on the cell sorter used. Presented here are the final concentrations utilized in this study.

References

  1. Giacomelli, E., et al. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development. 144 (6), 1008-1017 (2017).
  2. Wu, J., Wu, Z., Xue, Z., Li, H., Liu, J. PHBV/bioglass composite scaffolds with co-cultures of endothelial cells and bone marrow stromal cells improve vascularization and osteogenesis for bone tissue engineering. RSC Advances. 7 (36), 22197-22207 (2017).
  3. Lee, H., Chung, M., Jeon, N. L. Microvasculature: An essential component for organ-on-chip systems. MRS Bulletin. 39 (1), 51-59 (2014).
  4. Gritz, E., Hirschi, K. K. Specification and function of hemogenic endothelium during embryogenesis. Cellular and Molecular Life Sciences. 73 (8), 1547-1567 (2016).
  5. Williams, I. M., Wu, J. C. Generation of endothelial cells from human pluripotent stem cells: Methods, considerations, and applications. Arteriosclerosis, Thrombosis, and Vascular Biology. 39 (7), 1317-1329 (2019).
  6. Olmer, R., et al. Differentiation of human pluripotent stem cells into functional endothelial cells in scalable suspension culture. Stem Cell Reports. 10 (5), 1657-1672 (2018).
  7. Cossu, G., et al. Lancet Commission: Stem cells and regenerative medicine. The Lancet. 391 (10123), 883-910 (2018).
  8. Fox, I. J., et al. Use of differentiated pluripotent stem cells in replacement therapy for treating disease. Science. 345 (6199), 1247391 (2014).
  9. Mahla, R. S. Stem cells applications in regenerative medicine and disease therapeutics. International Journal of Cell Biology. 2016, 1-24 (2016).
  10. Ebert, A. D., Liang, P., Wu, J. C. Induced pluripotent stem cells as a disease modeling and drug screening platform. Journal of Cardiovascular Pharmacology. 60 (4), 408-416 (2012).
  11. Rowe, R. G., Daley, G. Q. Induced pluripotent stem cells in disease modelling and drug discovery. Nature Reviews Genetics. 20 (7), 377-388 (2019).
  12. Liu, C., Oikonomopoulos, A., Sayed, N., Wu, J. C. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development. 145 (5), (2018).
  13. Wnorowski, A., Yang, H., Wu, J. C. Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models. Advanced Drug Delivery Reviews. 140, 3-11 (2019).
  14. Ramme, A. P., et al. Autologous induced pluripotent stem cell-derived four-organ-chip. Future Science OA. 5 (8), 1-12 (2019).
  15. Ronaldson-Bouchard, K., Vunjak-Novakovic, G. Organs-on-a-Chip: A fast track for engineered human tissues in drug development. Cell Stem Cell. 22 (3), 310-324 (2018).
  16. Kane, N. M., et al. Derivation of endothelial cells from human embryonic stem cells by directed differentiation: analysis of microrna and angiogenesis in vitro and in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology. 30 (7), 1389-1397 (2010).
  17. Costa, M., et al. Derivation of endothelial cells from human embryonic stem cells in fully defined medium enables identification of lysophosphatidic acid and platelet activating factor as regulators of eNOS localization. Stem Cell Research. 10 (1), 103-117 (2013).
  18. Nguyen, M. T. X., et al. Differentiation of human embryonic stem cells to endothelial progenitor cells on laminins in defined and xeno-free systems. Stem Cell Reports. 7 (4), 802-816 (2016).
  19. Ikuno, T., et al. Efficient and robust differentiation of endothelial cells from human induced pluripotent stem cells via lineage control with VEGF and cyclic AMP. PLOS One. 12 (3), 0173271 (2017).
  20. Aoki, H., et al. Efficient differentiation and purification of human induced pluripotent stem cell-derived endothelial progenitor cells and expansion with the use of inhibitors of ROCK, TGF-B, and GSK3B. Heliyon. 6 (3), 03493 (2020).
  21. Lian, X., et al. Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of Wnt signaling. Stem Cell Reports. 3 (5), 804-816 (2014).
  22. Orlova, V. V., et al. Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nature Protocols. 9 (6), 1514-1531 (2014).
  23. Kusuma, S., Gerecht, S., Turksen, K. Derivation of endothelial cells and pericytes from human pluripotent stem cells. Human Embryonic Stem Cell Protocols. , 213-222 (2014).
  24. Bao, X., Lian, X., Palecek, S. P. Directed endothelial progenitor differentiation from human pluripotent stem cells via wnt activation under defined conditions. Methods in Molecular Biology. 1481, 183-196 (2016).
  25. Xu, M., He, J., Zhang, C., Xu, J., Wang, Y. Strategies for derivation of endothelial lineages from human stem cells. Stem Cell Research & Therapy. 10 (1), 200 (2019).
  26. Arora, S., Yim, E. K. F., Toh, Y. -. C. Environmental specification of pluripotent stem cell derived endothelial cells toward arterial and venous subtypes. Frontiers in Bioengineering and Biotechnology. 7, 143 (2019).
  27. Fang, J. S., et al. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nature Communications. 8 (1), 2149 (2017).
  28. Dalton, S. Linking the cell cycle to cell fate decisions. Trends in Cell Biology. 25 (10), 592-600 (2015).
  29. Wolf, K., Hu, H., Isaji, T., Dardik, A. Molecular identity of arteries, veins, and lymphatics. Journal of Vascular Surgery. 69 (1), 253-262 (2019).
  30. Rocha, S. F., Adams, R. H. Molecular differentiation and specialization of vascular beds. Angiogenesis. 12 (2), 139-147 (2009).
  31. Goldie, L. C., Lucitti, J. L., Dickinson, M. E., Hirschi, K. K. Cell signaling directing the formation and function of hemogenic endothelium during murine embryogenesis. Blood. 112 (8), 3194-3204 (2008).
  32. Chanda, B., Ditadi, A., Iscove, N. N., Keller, G. Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell. 155 (1), 215-227 (2013).
  33. Marcelo, K. L., et al. Hemogenic endothelial cell specification requires c-kit, notch signaling, and p27-mediated cell-cycle control. Developmental Cell. 27 (5), 504-515 (2013).
  34. Dejana, E., Hirschi, K. K., Simons, M. The molecular basis of endothelial cell plasticity. Nature Communications. 8 (1), 14361 (2017).
  35. Ottersbach, K. Endothelial-to-haematopoietic transition: an update on the process of making blood. Biochemical Society Transactions. 47 (2), 591-601 (2019).
  36. Pauklin, S., Vallier, L. The cell-cycle state of stem cells determines cell fate propensity. Cell. 155 (1), 135-147 (2013).
  37. Qiu, J., Nordling, S., Vasavada, H. H., Butcher, E. C., Hirschi, K. K. Retinoic acid promotes endothelial cell cycle early g1 state to enable human hemogenic endothelial cell specification. Cell Reports. 33 (9), 108465 (2020).
  38. Sriram, G., Tan, J. Y., Islam, I., Rufaihah, A. J., Cao, T. Efficient differentiation of human embryonic stem cells to arterial and venous endothelial cells under feeder- and serum-free conditions. Stem Cell Research & Therapy. 6 (1), 261 (2015).
  39. Ohta, R., Sugimura, R., Niwa, A., Saito, M. K. Hemogenic endothelium differentiation from human pluripotent stem cells in a feeder- and xeno-free defined condition. Journal of Visualized Experiments: JoVE. (148), e59823 (2019).
  40. Galat, Y., et al. Cytokine-free directed differentiation of human pluripotent stem cells efficiently produces hemogenic endothelium with lymphoid potential. Stem Cell Research & Therapy. 8 (1), 67 (2017).
  41. Sidney, L. E., Branch, M. J., Dunphy, S. E., Dua, H. S., Hopkinson, A. Concise review: Evidence for CD34 as a common marker for diverse progenitors. Stem Cells. 32 (6), 1380-1389 (2014).
check_url/62391?article_type=t

Play Video

Cite This Article
Nelson, E. A., Qiu, J., Chavkin, N. W., Hirschi, K. K. Directed Differentiation of Hemogenic Endothelial Cells from Human Pluripotent Stem Cells. J. Vis. Exp. (169), e62391, doi:10.3791/62391 (2021).

View Video