Summary

Запись сетевой активности в спинальных ноцицептивных цепях с помощью микроэлектродных матриц

Published: February 09, 2022
doi:

Summary

Описано совместное использование технологии микроэлектродных массивов и 4-аминопиридин-индуцированной химической стимуляции для исследования ноцицептивной активности на сетевом уровне в спинном роге спинного мозга.

Abstract

Роли и связность определенных типов нейронов в спинном роге спинного мозга (DH) очерчиваются с быстрой скоростью, чтобы обеспечить все более подробное представление о схемах, лежащих в основе обработки боли в позвоночнике. Тем не менее, влияние этих связей на более широкую сетевую активность в DH остается менее понятным, потому что большинство исследований сосредоточены на активности отдельных нейронов и небольших микросхем. В качестве альтернативы, использование микроэлектродных массивов (MEA), которые могут контролировать электрическую активность во многих клетках, обеспечивает высокое пространственное и временное разрешение нейронной активности. Здесь описано использование MEAs с срезами спинного мозга мыши для изучения активности DH, индуцированной химически стимулирующими схемами DH с 4-аминопиридином (4-AP). Результирующая ритмическая активность ограничена поверхностным DH, стабильна с течением времени, блокируется тетродотоксином и может быть исследована в различных ориентациях срезов. Вместе этот препарат обеспечивает платформу для исследования активности контура DH в тканях наивных животных, животных моделей хронической боли и мышей с генетически измененной ноцицептивной функцией. Кроме того, записи MEA в 4-AP-стимулированных срезах спинного мозга могут быть использованы в качестве инструмента быстрого скрининга для оценки способности новых антиноцицептивных соединений нарушать активность в спинном мозге DH.

Introduction

Роль специфических типов ингибирующих и возбуждающих интернейронов в ДГ спинного мозга раскрывается с быстрой скоростью 1,2,3,4. Вместе интернейроны составляют более 95% нейронов в DH и участвуют в сенсорной обработке, включая ноцицепцию. Кроме того, эти интернейронные цепи важны для определения того, поднимаются ли периферические сигналы по нейрооси, чтобы достичь мозга и способствовать восприятию боли 5,6,7. На сегодняшний день в большинстве исследований изучалась роль нейронов DH на уровне анализа одной клетки или всего организма с использованием комбинаций внутриклеточной электрофизиологии in vitro, нейроанатомической маркировки и поведенческого анализа in vivo 1,3,8,9,10,11,12,13,14 . Эти подходы значительно продвинули понимание роли конкретных популяций нейронов в обработке боли. Тем не менее, остается пробел в понимании того, как конкретные типы клеток и небольшие макроцепи влияют на большие популяции нейронов на уровне микросхем, чтобы впоследствии формировать выход DH, поведенческие реакции и болевой опыт.

Одной из технологий, которая может исследовать макросхему или функцию многоклеточного уровня, является микроэлектродная матрица (MEA)15,16. MEA использовались для исследования функции нервной системы в течение нескольких десятилетий17,18. В мозге они способствовали изучению развития нейронов, синаптической пластичности, фармакологического скрининга и тестирования токсичности17,18. Они могут использоваться как для приложений in vitro, так и in vivo, в зависимости от типа MEA. Кроме того, разработка МПС развивалась быстрыми темпами, и в настоящее время доступны различные номера и конфигурации электродов19. Ключевым преимуществом MEA является их способность одновременно оценивать электрическую активность во многих нейронах с высокой пространственной и временной точностью с помощью нескольких электродов15,16. Это обеспечивает более широкое считывание того, как нейроны взаимодействуют в цепях и сетях в условиях контроля и в присутствии локально применяемых соединений.

Одна из проблем препаратов DH in vitro заключается в том, что текущие уровни активности, как правило, низкие. Здесь эта проблема решается в цепях DH спинного мозга с использованием блокатора каналов K+ с напряжением, 4-аминопридина (4-AP), для химической стимуляции цепей DH. Этот препарат ранее применялся для установления ритмической синхронной электрической активности в ДГ острых срезов спинного мозга и при острых условиях in vivo 20,21,22,23,24. Эти эксперименты использовали одноклеточный пластырь и внеклеточную запись или кальциевую визуализацию для характеристики 4-AP-индуцированной активности 20,21,22,23,24,25. Вместе эта работа продемонстрировала потребность в возбуждающей и тормозной синаптической передаче и электрических синапсах для ритмической активности, индуцированной 4-AP. Таким образом, ответ 4-AP рассматривался как подход, который разоблачает нативные полисинаптические схемы DH с биологической значимостью, а не как эпифеномен, вызванный лекарственными средствами. Кроме того, активность, индуцированная 4-AP, демонстрирует аналогичный профиль реакции на анальгетические и противоэпилептические препараты, как невропатические болевые состояния, и была использована для предложения новых мишеней для анальгетических препаратов на основе позвоночника, таких как коннексины 20,21,22.

Здесь описан препарат, который сочетает в себе MEA и химическую активацию спинального DH с 4-AP для изучения этой ноцицептивной схемы на макроцептивном или сетевом уровне анализа. Этот подход обеспечивает стабильную и воспроизводимую платформу для исследования ноцицептивных цепей в наивных и невропатических «болевых» условиях. Этот препарат также легко применим для проверки действия известных анальгетиков на уровне схемы и для скрининга новых анальгетиков в гиперактивном спинном мозге.

Protocol

Исследования проводились на самцах и самках мышей c57Bl/6 в возрасте 3-12 месяцев. Все экспериментальные процедуры были выполнены в соответствии с Комитетом по уходу за животными и этике Университета Ньюкасла (протоколы A-2013-312 и A-2020-002). 1. Электрофизиология in vitro Приг…

Representative Results

Модель сетевой активности в спинном роге спинного мозгаПрименение 4-АП надежно индуцирует синхронную ритмическую активность в ДГ спинного мозга. Такая деятельность проявляется в увеличении EAP и LFP. Более поздний сигнал представляет собой низкочастотную форму сигнала, котор…

Discussion

Несмотря на важность спинального DH в ноцицептивной передаче сигналов, обработке и результирующих поведенческих и эмоциональных реакциях, которые характеризуют боль, цепи в этой области остаются плохо изученными. Ключевой проблемой в исследовании этого вопроса было разнообразие попу…

Declarações

The authors have nothing to disclose.

Acknowledgements

Эта работа финансировалась Национальным советом по здравоохранению и медицинским исследованиям (NHMRC) Австралии (гранты 631000, 1043933, 1144638 и 1184974 B.A.G. и R.J.C.) и Институтом медицинских исследований Хантера (грант B.A.G. и R.J.C.).

Materials

4-aminopyridine Sigma-Aldrich 275875-5G
100% ethanol Thermo Fisher AJA214-2.5LPL
CaCl2 1M Banksia Scientific 0430/1L
Carbonox (Carbogen – 95% O2, 5% CO2) Coregas 219122
Curved long handle spring scissors Fine Science Tools 15015-11
Custom made air interface incubation chamber
Foetal bovine serum Thermo Fisher 10091130
Forceps Dumont #5 Fine Science Tools 11251-30
Glucose Thermo Fisher AJA783-500G
Horse serum Thermo Fisher 16050130
Inverted microscope Zeiss Axiovert10
KCl Thermo Fisher AJA383-500G
Ketamine Ceva KETALAB04
Large surgical scissors Fine Science Tools 14007-14
Loctite 454 Instant Adhesive Bolts and Industrial Supplies L4543G
MATLAB MathWorks R2018b
MEAs, 3-Dimensional Multichannel Systems 60-3DMEA100/12/40iR-Ti, 60-3DMEA200/12/50iR-Ti 60 titanium nitride (TiN) electrodes with 1 internal reference electrode, organised in an 8×8 square grid. Electrodes are 12 µm in diameter, 40 µm (100/12/40) or 50 µm (200/12/50) high and equidistantly spaced 100 µm (100/12/40) or 200 µm (200/12/50) apart.
MEA headstage Multichannel Systems MEA2100-HS60
MEA interface board Multichannel Systems MCS-IFB 3.0 Multiboot
MEA net Multichannel Systems ALA HSG-MEA-5BD
MEA perfusion system Multichannel Systems PPS2
MEAs, Planar Multichannel Systems 60MEA200/30iR-Ti, 60MEA500/30iR-Ti 60 titanium nitride (TiN) electrodes with 1 internal reference electrode, organised in either a 8×8 square grid (200/30) or a 6×10 rectangular grid (500/30). Electrodes are 30 µm in diameter and equidistantly spaced 200 µm (200/30) or 500 µm (500/30) apart.
MgCl2 Thermo Fisher AJA296-500G
Microscope camera Motic Moticam X Wi-Fi
Multi Channel Analyser software Multichannel Systems V 2.17.4
Multi Channel Experimenter software Multichannel Systems V 2.17.4
NaCl Thermo Fisher AJA465-500G
NaHCO3 Thermo Fisher AJA475-500G
NaH2PO4 Thermo Fisher ACR207805000
Rongeurs Fine Science Tools 16021-14
Small spring scissors Fine Science Tools 91500-09
Small surgical scissors Fine Science Tools 14060-09
Sucrose Thermo Fisher AJA530-500G
Superglue cyanoacrylate adhesive
Tetrodotoxin Abcam AB120055
Vibration isolation table Newport VH3048W-OPT
Vibrating microtome Leica VT1200 S

Referências

  1. Smith, K. M., et al. Calretinin positive neurons form an excitatory amplifier network in the spinal cord dorsal horn. eLife. 8, 49190 (2019).
  2. Smith, K. M., et al. Functional heterogeneity of calretinin-expressing neurons in the mouse superficial dorsal horn: implications for spinal pain processing. The Journal of physiology. 593 (19), 4319-4339 (2015).
  3. Boyle, K. A., et al. Defining a spinal microcircuit that gates myelinated afferent input: Implications for tactile allodynia. Cell Reports. 28 (2), 526-540 (2019).
  4. Browne, T. J., et al. Transgenic cross-referencing of inhibitory and excitatory interneuron populations to dissect neuronal heterogeneity in the dorsal horn. Frontiers in Molecular Neuroscience. 13, 32 (2020).
  5. Graham, B. A., Hughes, D. I. Rewards, perils and pitfalls of untangling spinal pain circuits. Current Opinion in Physiology. 11, 35-41 (2019).
  6. Todd, A. J. Neuronal circuitry for pain processing in the dorsal horn. Nature Reviews Neuroscience. 11 (12), 823-836 (2010).
  7. Hughes, D. I., Todd, A. J. Central nervous system targets: inhibitory interneurons in the spinal cord. Neurotherapeutics. 17 (3), 874-885 (2020).
  8. Duan, B., et al. Identification of spinal circuits transmitting and gating mechanical pain. Cell. 159 (6), 1417-1432 (2014).
  9. Hachisuka, J., Chiang, M. C., Ross, S. E. Itch and neuropathis itch. Pain. 159 (3), 603 (2018).
  10. Foster, E., et al. Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch. Neuron. 85 (6), 1289-1304 (2015).
  11. Bourane, S., et al. Identification of a spinal circuit for light touch and fine motor control. Cell. 160 (3), 503-515 (2015).
  12. Cheng, L., et al. Identification of spinal circuits involved in touch-evoked dynamic mechanical pain. Nature neuroscience. 20 (6), 804-814 (2017).
  13. Peirs, C., et al. Mechanical allodynia circuitry in the dorsal horn is defined by the nature of the injury. Neuron. 109 (1), 73-90 (2021).
  14. Huang, J., et al. Circuit dissection of the role of somatostatin in itch and pain. Nature Neuroscience. 21 (5), 707-716 (2018).
  15. Obien, M. E. J., Deligkaris, K., Bullmann, T., Bakkum, D. J., Frey, U. Revealing neuronal function through microelectrode array recordings. Frontiers in Neuroscience. 8, 423 (2015).
  16. Nam, Y., Wheeler, B. C. In vitro microelectrode array technology and neural recordings. Critical Reviews in Biomedical Engineering. 39 (1), 45-61 (2011).
  17. Johnstone, A. F., et al. Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology. 31 (4), 331-350 (2010).
  18. Stett, A., et al. Biological application of microelectrode arrays in drug discovery and basic research. Analytical and Bioanalytical Chemistry. 377 (3), 486-495 (2003).
  19. Xu, L., et al. Trends and recent development of the microelectrode arrays (MEAs). Biosensors and Bioelectronics. 175 (1), 112854 (2020).
  20. Chapman, R. J., Cilia La Corte, P. F., Asghar, A. U. R., King, A. E. Network-based activity induced by 4-aminopyridine in rat dorsal horn in vitro is mediated by both chemical and electrical synapses. The Journal of Physiology. 587, 2499-2510 (2009).
  21. Ruscheweyh, R., Sandkühler, J. Epileptiform activity in rat spinal dorsal horn in vitro has common features with neuropathic pain. Pain. 105 (1-2), 327-338 (2003).
  22. Kay, C. W., Ursu, D., Sher, E., King, A. E. The role of Cx36 and Cx43 in 4-aminopyridine-induced rhythmic activity in the spinal nociceptive dorsal horn: an electrophysiological study in vitro. Physiological Reports. 4 (14), 12852 (2016).
  23. Jankowska, E., Lundberg, A., Rudomin, P., Sykova, E. Effects of 4-aminopyridine on synaptic transmission in the cat spinal cord. Brain Research. 240 (1), 117-129 (1982).
  24. Semba, K., Geller, H. M., Egger, M. D. 4-Aminopyridine induces expansion of cutaneous receptive fields of dorsal horn cells. Brain Research. 343 (2), 398-402 (1985).
  25. Ruscheweyh, R., Sandkühler, J. Long-range oscillatory Ca2+ waves in rat spinal dorsal horn. European Journal of Neuroscience. 22 (8), 1967-1976 (2005).
  26. Egert, U., et al. A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays. Brain Research Protocols. 2 (4), 229-242 (1998).
  27. Thiebaud, P., De Rooij, N., Koudelka-Hep, M., Stoppini, L. Microelectrode arrays for electrophysiological monitoring of hippocampal organotypic slice cultures. IEEE Transactions on Biomedical Engineering. 44 (11), 1159-1163 (1997).
  28. Rey, H. G., Pedreira, C., Quiroga, R. Q. Past, present and future of spike sorting techniques. Brain Research Bulletin. 119, 106-117 (2015).
  29. Satuvuori, E., et al. Measures of spike train synchrony for data with multiple time scales. Journal of Neuroscience Methods. 287, 25-38 (2017).
  30. Mendis, G. D. C., Morrisroe, E., Reid, C. A., Halgamuge, S. K., Petrou, S. Use of local field potentials of dissociated cultures grown on multi-electrode arrays for pharmacological assays. 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. , 952-956 (2016).
  31. Hughes, D. I., et al. Morphological, neurochemical and electrophysiological features of parvalbumin-expressing cells: a likely source of axo-axonic inputs in the mouse spinal dorsal horn. The Journal of Physiology. 590 (16), 3927-3951 (2012).
  32. Peirs, C., Seal, R. P. Neural circuits for pain: recent advances and current views. Science. 354 (6312), 578-584 (2016).
  33. Li, J., Baccei, M. L. Developmental regulation of membrane excitability in rat spinal lamina I projection neurons. Journal of Neurophysiology. 107 (10), 2604-2614 (2012).
  34. Li, J., Baccei, M. L. Pacemaker neurons within newborn spinal pain circuits. Journal of Neuroscience. 31 (24), 9010-9022 (2011).
  35. Sandkühler, J., Eblen-Zajjur, A. Identification and characterization of rhythmic nociceptive and non-nociceptive spinal dorsal horn neurons in the rat. Neurociência. 61 (4), 991-1006 (1994).
  36. Lucas-Romero, J., Rivera-Arconada, I., Roza, C., Lopez-Garcia, J. A. Origin and classification of spontaneous discharges in mouse superficial dorsal horn neurons. Scientific Reports. 8 (1), 9735-9735 (2018).
  37. Antonio, L., et al. L. al. In vitro seizure like events and changes in ionic concentration. Journal of Neuroscience Methods. 260, 33-44 (2016).
  38. Avoli, M., Jefferys, J. G. Models of drug-induced epileptiform synchronization in vitro. Journal of Neuroscience Methods. 260, 26-32 (2016).
  39. Taccola, G., Nistri, A. Low micromolar concentrations of 4-aminopyridine facilitate fictive locomotion expressed by the rat spinal cord in vitro. Neurociência. 126 (2), 511-520 (2004).
  40. Mitra, P., Brownstone, R. M. An in vitro spinal cord slice preparation for recording from lumbar motoneurons of the adult mouse. Journal of Neurophysiology. 107 (2), 728-741 (2012).
  41. Egert, U., Heck, D., Aertsen, A. Two-dimensional monitoring of spiking networks in acute brain slices. Experimental Brain Research. 142 (2), 268-274 (2002).
check_url/pt/62920?article_type=t

Play Video

Citar este artigo
Iredale, J. A., Stoddard, J. G., Drury, H. R., Browne, T. J., Elton, A., Madden, J. F., Callister, R. J., Welsh, J. S., Graham, B. A. Recording Network Activity in Spinal Nociceptive Circuits Using Microelectrode Arrays. J. Vis. Exp. (180), e62920, doi:10.3791/62920 (2022).

View Video