Summary

A Simple Microfluidic Chip for Long-Term Growth and Imaging of Caenorhabditis elegans

Published: April 11, 2022
doi:

Summary

The protocol describes a simple microfluidic chip design and microfabrication methodology used to grow C. elegans in presence of a continuous food supply for up to 36 h. The growth and imaging device also enables intermittent long-term high-resolution imaging of cellular and sub-cellular processes during development for several days.

Abstract

Caenorhabditis elegans (C. elegans) have proved to be a valuable model system for studying developmental and cell biological processes. Understanding these biological processes often requires long-term and repeated imaging of the same animal. Long recovery times associated with conventional immobilization methods done on agar pads have detrimental effects on animal health making it inappropriate to repeatedly image the same animal over long periods of time. This paper describes a microfluidic chip design, fabrication method, on-chip C. elegans culturing protocol, and three examples of long-term imaging to study developmental processes in individual animals. The chip, fabricated with polydimethylsiloxane and bonded on a cover glass, immobilizes animals on a glass substrate using an elastomeric membrane that is deflected using nitrogen gas. Complete immobilization of C. elegans enables robust time-lapse imaging of cellular and sub-cellular events in an anesthetic-free manner. A channel geometry with a large cross-section allows the animal to move freely within two partially sealed isolation membranes permitting growth in the channel with a continuous food supply. Using this simple chip, imaging of developmental phenomena such as neuronal process growth, vulval development, and dendritic arborization in the PVD sensory neurons, as the animal grows inside the channel, can be performed. The long-term growth and imaging chip operates with a single pressure line, no external valves, inexpensive fluidic consumables, and utilizes standard worm handling protocols that can easily be adapted by other laboratories using C. elegans.

Introduction

Caenorhabditis elegans has proved to be a powerful model organism to study cell biology, aging, development biology, and neurobiology. Advantages such as its transparent body, short life cycle, easy maintenance, a defined number of cells, homology with several human genes, and well-studied genetics have led to C. elegans becoming a popular model both for fundamental biology discoveries and applied research1,2. Understanding cell's biological and developmental processes from repeated long-term observation of individual animals can prove to be beneficial. Conventionally, C. elegans is anesthetized on agar pads and imaged under the microscope. Adverse effects of anesthetics on the health of animals limit the use of anesthetized animals for long-term and repeated intermittent imaging of the same animal3,4. Recent advances in microfluidic technologies and their adaptation for anesthetic-free trapping of C. elegans with negligible health hazards enable high-resolution imaging of the same animal over a short and long period of time.

Microfluidic chips have been designed for C. elegans'5 high throughput screening6,7,8, trapping and dispensing9, drug screening10,11, neuron stimulation with high-resolution imaging12, and high-resolution imaging of the animal12,13,14. Ultra-thin microfluidic sheets for immobilization on slides have also been developed15. Long-term studies of C. elegans have been performed using low-resolution images of animals growing in liquid culture to observe growth, calcium dynamics, drug effects on their behavior16,17,18,19, their longevity, and aging20. Long-term studies using high-resolution microscopy have been carried out to assess synaptic development21, neuronal regeneration22, and mitochondrial addition23. Long-term high-resolution imaging and tracing of cell fate and differentiation have been done in multichannel devices24,25. Several cellular and sub-cellular events occur over the time scales of several hours and require trapping the same individual at different time points during their development to characterize all intermediate steps in the process to understand cellular dynamics in vivo. To image biological process such as organogenesis, neuronal development, and cell migration, the animal needs to be immobilized in the same orientation at multiple time points. We have previously published a protocol for high-resolution imaging of C. elegans for over 36 h to determine where mitochondria are added along the touch receptor neurons (TRNs)23.

This paper provides a protocol for establishing a microfluidics-based methodology for repeated high-resolution imaging. This device, with a single flow channel, is best suited for repeated imaging of a single animal per device. To improve throughput and image many animals at once, multiple devices could be connected to the same pressure line but with separate three-way connectors controlling a single animal in each device. The design is useful for studies that demand high-resolution time-lapse images such as post-embryonic developmental processes, cell migration, organelle transport, gene expression studies, etc. The technology could be limiting for some applications such as lifespan and aging studies that require parallel growth and imaging of many late-stage animals. Polydimethylsiloxane (PDMS) elastomer was used for fabricating this device due to its biostability26, biocompatibility27,28, gas permeablility29,30, and tunable elastic modulus31. This two-layer device allows the growth of animals with continuous food supply in a microfluidic channel and the trapping of individual C. elegans via PDMS membrane compression using nitrogen gas. This device is an extension of the previously published device with the advantage of growing and imaging the same animal in the microchannel under a continuous food supply3. The additional isolation membrane network and a 2 mm wide trapping membrane enable efficient immobilization of developing animals. The device has been used to observe neuronal development, vulval development, and dendritic arborization in sensory PVD neurons. The animals grow without adverse health effects in the device and can be repeatedly immobilized to facilitate imaging sub-cellular events in the same animal during its development.

The entire protocol is divided into five parts. Part 1 describes device fabrication for the growth and imaging chip. Part 2 describes how to set up a pressure system for the PDMS membrane deflection to immobilize and isolate individual C. elegans. Part 3 describes how to synchronize C. elegans on a nematode growth medium (NGM) plate for device imaging. Part 4 describes how to load a single animal in the device and grow the animal inside the microfluidic device for several days. Part 5 describes how to immobilize an individual animal at multiple time points, capture high-resolution images using different objectives, and analyze the images using Fiji.

Protocol

1. Fabrication of growth and imaging device SU8 mold fabrication Design patterns 1 (flow layer) and 2 (control layer) using rectangular shapes in a word processing software (or a computer-aided design CAD software) and print the photomasks with the help of a laser plotter with a minimum feature size of 8 µm on polyester-based film (Figure 1). Cut silicon wafers in 2.5 cm × 2.5 cm pieces and clean them with 20% KOH for 1 min. Rinse…

Representative Results

Device characterization: The growth and imaging device consists of two PDMS layers bonded together (Figure 1) using irreversible plasma bonding. The flow layer (pattern 1) which is 10 mm in length and 40 µm or 80 µm in height allows us to grow the animal in liquid culture (Figure 1A). The trapping layer (pattern 2) has a 2 mm wide membrane (Figure 1B) for immobilizing the animal for high-resolution imaging…

Discussion

In this paper, a protocol for fabrication and use of a simple microfluidic device for growing C. elegans with constant food supply and high-resolution imaging of a single animal during its development has been described. This fabrication process is simple and can be done in a non-sterile environment. A dust-free environment is critical during fabrication steps. The presence of dust particles would lead to improper contact between the two bonding surfaces, resulting in poor bonding and leakage of the device durin…

Declarações

The authors have nothing to disclose.

Acknowledgements

We thank CIFF imaging facility, NCBS for use of the confocal microscopes supported by the DST – Centre for Nanotechnology (No. SR/55/NM-36-2005). We thank research funding from DBT (SPK), CSIR-UGC (JD), DST (SM), DBT (SM), spinning disc supported by DAE-PRISM 12-R&D-IMS-5.02.0202 (SPK and Gautam Menon), and HHMI-IECS grant number 55007425 (SPK). HB101, PS3239, and wdIs51 strains were provided by the Caenorhabditis Genetics Center (CGC), which is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440). S.P.K. made jsIs609 in Mike Nonet's Laboratory.

Materials

18 G needles Sigma-Aldrich, Bangalore, India Gauge 18
3-way stopcock Cole-Parmer WW-30600-02 Masterflex fitting with luer lock
CCD camera Andor Technology EMCCD C9100-13no
Circuit board film Fine Line Imaging, Colorado, USA The designs are printed with 65,024 dots per inch (DPI)
Convection Oven Meta-Lab Scientific Industries, India MSI-5
Coverslips Blue stat microscopic cover glass 22mm x 10Gms
Ethanol Hi media
Harris uni-core puncher 1mm Qiagen Z708801
Hexamethyldisilazane Sigma-Aldrich, Bangalore, India 440191
Hot plate  IKA RCT B S 22
Isopropanol Fisher Scientific 26895
KOH Fisher Scientific
Laser Scanning Microscope ZEISS LSM 5 LIVE
Micropipette tips Tarsons 0.5-10 µL micropipette tips are used for food supply
Negative Photoresist-1 Microchem SU8-2025 http://www.microchem.com/Prod-SU82000.htm
Negative Photoresist-2 Microchem SU8-2050 http://www.microchem.com/Prod-SU82000.htm
Nitrogen gas Local Supplier Commercial nitrogen gas Cylinder volume of 7 cubic meter
PDMS (Curing solution) Dow Corning Corporation, MI, USA  Sylgard curing solution curing agent
Petri plates Praveen Scientific Corporation
Plasma cleaner Harrick Plasma, NY, USA  PDC-32G
Razor and blades Lister surgical Blade
Silicon Elastomer (Base) Dow Corning Corporation, MI, USA Sylgard 184 base elastomer base
Silicon tubes Fisher Scientific Plastic tubes with the inner diameter 1.59 mm and the outer diameter 3.18 mm
Silicon wafer University Wafer, MA, USA [100] orientation, 4-inch diameter Small pieces (2 mm × 2 mm) were cut from 100 mm diameter wafer
Spin Coater SPS-Europe B.V., The Netherlands SPIN 150
Spinning Disk microscope Perkin Elmer ultra-view VOX system CSU-X1-A3 N The system was equipped with four (405/488/561/640 nm) lasers and controlled with the Volocity software package.
SU8 developer Microchem, MA, USA SU8 Developer
Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane Sigma-Aldrich, Bangalore, India 448931 Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane vapor is toxic
UV lamp Oriel Instruments, Bangalore, India 200 Watt and collimated UV light source
Volocity software Perkin-Elmer Image analysis

Referências

  1. Doitsidou, M., Poole, R. J., Sarin, S., Bigelow, H., Hobert, O. C. elegans Mutant Identification with a One-Step Whole-Genome-Sequencing and SNP Mapping Strategy. PloS One. 5 (11), 15435 (2010).
  2. Hobert, O. Neurogenesis in the nematode Caenorhabditis elegans. WormBook. The C. elegans. Research Community, WormBook. , (2010).
  3. Mondal, S., Ahlawat, S., Rau, K., Venkataraman, V., Koushika, S. P. Imaging in vivo neuronal transport in genetic model organisms using microfluidic devices. Traffic. 12 (4), 372-385 (2011).
  4. Steele, L. M., Sedensky, M. M. Approaches to Anesthetic Mechanisms: The C. elegans Model. Methods in Enzymology. 602, 133-151 (2018).
  5. San-Miguel, A., Lu, H. Microfluidics as a tool for C. elegans research. WormBook. The C. elegans. Research Community, WormBook. , (2013).
  6. Cáceres, I. C., Valmas, N., Hilliard, M. A., Lu, H. Laterally orienting C. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies. PloS One. 7 (4), 35037 (2012).
  7. Ai, X., Zhuo, W., Liang, Q., McGrath, P. T., Lu, H. A high-throughput device for size based separation of C. elegans developmental stages. Lab on a Chip. 14 (10), 1746-1752 (2014).
  8. Chung, K., Crane, M. M., Lu, H. Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nature Methods. 5 (7), 637-643 (2008).
  9. Desta, I. T., et al. Detecting and Trapping of a Single C. elegans Worm in a Microfluidic Chip for Automated Microplate Dispensing. SLAS Technology. 22 (4), 431-436 (2017).
  10. Ben-Yakar, A. High-Content and High-Throughput In Vivo Drug Screening Platforms Using Microfluidics. Assay and Drug Development Technologies. 17 (1), 8-13 (2019).
  11. Mondal, S., et al. Large-scale microfluidics providing high-resolution and high-throughput screening of Caenorhabditis elegans poly-glutamine aggregation model. Nature Communications. 7, 13023 (2016).
  12. Fehlauer, H., et al. Using a Microfluidics Device for Mechanical Stimulation and High Resolution Imaging of C. Elegant. Journal of Visualized Experiments: JoVE. (132), e56530 (2018).
  13. Saberi-Bosari, S., Huayta, J., San-Miguel, A. A microfluidic platform for lifelong high-resolution and high throughput imaging of subtle aging phenotypes in C. elegans. Lab on a Chip. 18 (20), 3090-3100 (2018).
  14. Cornaglia, M., et al. An automated microfluidic platform for C. elegans embryo arraying, phenotyping, and long-term live imaging. Scientific Reports. 5, 10192 (2015).
  15. Suzuki, M., et al. Development of ultra-thin chips for immobilization of Caenorhabditis elegans in microfluidic channels during irradiation and selection of buffer solution to prevent dehydration. Journal of Neuroscience Methods. 306, 32-37 (2018).
  16. Hulme, S. E., et al. Lifespan-on-a-chip: microfluidic chambers for performing lifelong observation of C. elegans. Lab on a Chip. 10 (5), 589-597 (2010).
  17. Chronis, N., Zimmer, M., Bargmann, C. I. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nature Methods. 4 (9), 727-731 (2007).
  18. Lagoy, R. C., Albrecht, D. R. Microfluidic Devices for Behavioral Analysis, Microscopy, and Neuronal Imaging in Caenorhabditis Elegans. Methods in Molecular Biology. 1327, 159-179 (2015).
  19. Levine, E., Lee, K. S. Microfluidic approaches for Caenorhabditis elegans research. Animal Cells and Systems. 24 (6), 311-320 (2020).
  20. Rahman, M., et al. NemaLife chip: a micropillar-based microfluidic culture device optimized for aging studies in crawling C. elegans. Scientific Reports. 10 (1), 16190 (2020).
  21. Allen, P. B., et al. Single-synapse ablation and long-term imaging in live C. elegans. Journal of Neuroscience Methods. 173 (1), 20-26 (2008).
  22. Guo, S. X., et al. Femtosecond laser nanoaxotomy lab-on-a-chip for in vivo nerve regeneration studies. Nature Methods. 5 (6), 531-533 (2008).
  23. Mondal, S., et al. Tracking Mitochondrial Density and Positioning along a Growing Neuronal Process in Individual C. elegans Neuron Using a Long-Term Growth and Imaging Microfluidic Device. eNeuro. 8 (4), (2021).
  24. Keil, W., Kutscher, L. M., Shaham, S., Siggia, E. D. Long-Term High-Resolution Imaging of Developing C. elegans Larvae with Microfluidics. Developmental Cell. 40 (2), 202-214 (2017).
  25. Gritti, N., Kienle, S., Filina, O., Van Zon, J. S. Long-term time-lapse microscopy of C. Elegans post-embryonic development. Nature Communications. 7, 12500 (2016).
  26. Kim, S., et al. A biostable, anti-fouling zwitterionic polyurethane-urea based on PDMS for use in blood-contacting medical devices. Journal of materials chemistry B. 8 (36), 8305-8314 (2020).
  27. Peterson, S. L., McDonald, A., Gourley, P. L., Sasaki, D. Y. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells. Journal of Biomedical Materials ResearchPart A. 72 (1), 10-18 (2005).
  28. Folch, A., Toner, M. Cellular micropatterns on biocompatible materials. Biotechnology Progress. 14 (3), 388-392 (1998).
  29. Leclerc, E., Sakai, Y., Fujii, T. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes. Biotechnology Progress. 20 (3), 750-755 (2004).
  30. Mehta, G., et al. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture. Biomedical Microdevices. 9 (2), 123-134 (2007).
  31. Palchesko, R. N., Zhang, L., Sun, Y., Feinberg, A. W. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PloS One. 7 (12), 51499 (2012).
  32. Inoue, T., et al. Gene expression markers for Caenorhabditis elegans vulval cells. Mechanisms of Development. 119, 203-209 (2002).
  33. Fatouros, C., et al. Inhibition of Tau aggregation in a novel caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Human Molecular Genetics. 21 (16), 3587-3603 (2012).
  34. Smith, C. J., et al. Time-lapse imaging and cell-speci fi c expression pro fi ling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans. Biologia do Desenvolvimento. 345 (1), 18-33 (2010).
  35. Brenner, S. The genetics of Caenorhabditis elegans. Genética. 77 (1), 71-94 (1974).
  36. Oren-Suissa, M., Hall, D. H., Treinin, M., Shemer, G., Podbilewicz, B. The fusogen EFF-I controls sculpting of mechanosensory dendrites. Science. 328 (5983), 1285-1288 (2010).
  37. Smith, C. J., et al. Sensory neuron fates are distinguished by a transcriptional switch that regulates dendrite branch stabilization. Neuron. 79 (2), 266-280 (2013).
  38. Shrestha, B. R., Grueber, W. B. Neuronal morphogenesis: worms get an EFF in dendritic arborization. Current Biology: CB. 20 (16), 673-675 (2010).
  39. Rao, G. N., Kulkarni, S. S., Koushika, S. P., Rau, K. R. In vivo nanosecond laser axotomy: cavitation dynamics and vesicle transport. Optics Express. 16 (13), 9884-9894 (2008).
  40. Sure, G. R., et al. UNC-16/JIP3 and UNC-76/FEZ1 limit the density of mitochondria in C. elegans neurons by maintaining the balance of anterograde and retrograde mitochondrial transport. Scientific Reports. 8 (1), 8938 (2018).
  41. Awasthi, A., et al. Regulated distribution of mitochondria in touch receptor neurons of C. elegans influences touch response. bioRxiv. , (2020).
check_url/pt/63136?article_type=t

Play Video

Citar este artigo
Dubey, J., Mondal, S., Koushika, S. P. A Simple Microfluidic Chip for Long-Term Growth and Imaging of Caenorhabditis elegans. J. Vis. Exp. (182), e63136, doi:10.3791/63136 (2022).

View Video