Summary

Experimental and Data Analysis Workflow for Soft Matter Nanoindentation

Published: January 18, 2022
doi:

Summary

The protocol presents a complete workflow for soft material nanoindentation experiments, including hydrogels and cells. First, the experimental steps to acquire force spectroscopy data are detailed; then, the analysis of such data is detailed through a newly developed open-source Python software, which is free to download from GitHub.

Abstract

Nanoindentation refers to a class of experimental techniques where a micrometric force probe is used to quantify the local mechanical properties of soft biomaterials and cells. This approach has gained a central role in the fields of mechanobiology, biomaterials design and tissue engineering, to obtain a proper mechanical characterization of soft materials with a resolution comparable to the size of single cells (μm). The most popular strategy to acquire such experimental data is to employ an atomic force microscope (AFM); while this instrument offers an unprecedented resolution in force (down to pN) and space (sub-nm), its usability is often limited by its complexity that prevents routine measurements of integral indicators of mechanical properties, such as Young's Modulus (E). A new generation of nanoindenters, such as those based on optical fiber sensing technology, has recently gained popularity for its ease of integration while allowing to apply sub-nN forces with µm spatial resolution, therefore being suitable to probe local mechanical properties of hydrogels and cells.

In this protocol, a step-by-step guide detailing the experimental procedure to acquire nanoindentation data on hydrogels and cells using a commercially available ferrule-top optical fiber sensing nanoindenter is presented. Whereas some steps are specific to the instrument used herein, the proposed protocol can be taken as a guide for other nanoindentation devices, granted some steps are adapted according to the manufacturer's guidelines. Further, a new open-source Python software equipped with a user-friendly graphical user interface for the analysis of nanoindentation data is presented, which allows for screening of incorrectly acquired curves, data filtering, computation of the contact point through different numerical procedures, the conventional computation of E, as well as a more advanced analysis particularly suited for single-cell nanoindentation data.

Introduction

The fundamental role of mechanics in biology is nowadays established1,2. From whole tissues to single cells, mechanical properties can inform about the pathophysiological state of the biomaterial under investigation3,4. For example, breast tissue affected by cancer is stiffer than healthy tissue, a concept that is the basis of the popular palpation test5. Notably, it has been recently shown that the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is underlined by changes in the mechanical properties of blood cells, including decreased erythrocyte deformability and decreased lymphocyte and neutrophil stiffness as compared to blood cells from SARS-CoV-2-naïve individuals6.

In general, the mechanics of cells and tissues are inherently intertwined: each tissue has specific mechanical properties that simultaneously influence and depend on those of the constituent cells and extracellular matrix (ECM)5. Because of this, strategies to study mechanics in biology often involve engineering substrates with physiologically relevant mechanical stimuli to elucidate cell behavior in response to those stimuli. For example, the seminal work by Engler and colleagues demonstrated that mesenchymal stem cell linage commitment is controlled by matrix elasticity, as studied on soft and stiff two-dimensional polyacrylamide (PAAm) hydrogels7.

Many strategies to mechanically characterize the biomaterial under investigation exist, varying in spatial scale (i.e., local to bulk) and in the mode of deformation (e.g., axial vs shear), consequently yielding different information, which needs careful interpretation3,8,9,10. The mechanics of soft biomaterials is commonly expressed in terms of stiffness. However, stiffness depends on both material properties and geometry, whereas elastic moduli are fundamental properties of a material and are independent of the material's geometry11. As such, different elastic moduli are related to the stiffness of a given sample, and each elastic modulus encompasses the material's resistance to a specific mode of deformation (e.g., axial vs shear) under different boundary conditions (e.g., free expansion vs confinement)11,12. Nanoindentation experiments allow the quantification of mechanical properties through the E which is associated with uniaxial deformation (indentation) when the biomaterial is not laterally confined10,11,12.

The most popular method to quantify E of biological systems at the microscale is AFM13,14,15,16. AFM is an extremely powerful tool with force resolution down to the pN level and spatial resolution down to the sub-nm scale. Further, AFM offers extreme flexibility in terms of coupling with complementary optical and mechanical tools, extending its capabilities to extract a wealth of information from the biomaterial under investigation13. Those attractive features, however, come with a barrier-to-entry represented by the complexity of the experimental set-up. AFM requires extensive training before users can acquire robust data, and its use for everyday mechanical characterization of biological materials is often unjustified, especially when its unique force and spatial resolutions are not required.

Because of this, a new class of nanoindenters has recently gained popularity due to their ease of use, while still offering AFM-comparable data with sub-nN force resolution and µm spatial resolution, reflecting forces exerted and perceived by cells over relevant length scales2. Particularly, ferrule-top nanoindentation devices based on optical fiber sensing technology17,18 have gained popularity among researchers active in the field of mechanobiology and beyond; and a wealth of works reporting the mechanical properties of biomaterials using these devices, including cells19,20, hydrogels8,21, and tissues22,23 have been published. Despite the capabilities of these systems to probe local dynamic mechanical properties (i.e., storage and loss modulus), quasi-static experiments yielding E remain the most popular choice8,19,20,21. In brief, quasi-static nanoindentation experiments consists of indenting the sample with a constant speed up to a set-point defined either by a maximum displacement, force, or indentation depth, and recording both the force and the vertical position of the cantilever in so-called force-distance (F-z) curves. F-z curves are then converted into force-indentation (F-δ) curves through the identification of the contact point (CP), and fitted with an appropriate contact mechanics model (usually the Hertz model13) to compute E.

While the operation of ferrule-top nanoindenters resembles AFM measurements, there are specificities worth considering. In this work, a step-by-step guide to robustly acquire F-z curves from cells and tissue-mimicking hydrogels using a commercially available ferrule-top nanoindenter is provided, in order to encourage standardization of experimental procedures between research groups using this and other similar devices. In addition, advice on how to best prepare hydrogel samples and cells to perform nanoindentation experiments is given, together with troubleshooting tips along the experimental pathway.

Furthermore, much of the variability in nanoindentation results (i.e., E and its distribution) depends on the specific procedure used to analyze data, which is non-trivial. To address this issue, instructions for the use of a newly developed open-source software programmed in Python and equipped with a user-friendly graphical user interface (GUI) for batch analysis of F-z curves are provided. The software allows for fast data screening, filtering of data, computation of the CP through different numerical procedures, the conventional computation of E, as well a more advanced analysis named the elasticity spectra24, allowing to estimate the cell's bulk Young's modulus, actin cortex's Young's modulus, and actin cortex's thickness. The software can be freely downloaded from GitHub and can be easily adapted to analyze data originating from other systems by adding an appropriate data parser. It is emphasized that this protocol can be used for other ferrule-top nanoindentation devices, and other nanoindentation devices in general, granted some steps are adapted according to the specific instrument's guidelines. The protocol is schematically summarized in Figure 1.

Protocol

1. Preparation of substrates/cells for nanoindentation measurements Follow the steps given in the Supplementary Protocol for preparation of PAAm hydrogels/cells for nanoindentation experiments. The procedure is summarized in Figure 2. NOTE: PAAm hydrogels have been chosen as they are the most common hydrogels used within the field of mechanobiology. However, the protocol is equally applicable to any type of hydrogel25</su…

Representative Results

Following the protocol, a set of F-z curves is obtained. The dataset will most likely contain good curves, and curves to be discarded before continuing with the analysis. In general, curves should be discarded if their shape is different from the one shown in Figure 4A. Figure 5AI shows a dataset of ~100 curves obtained on a soft PAAm hydrogel of expected E 0.8 KPa35 uploaded in the NanoPrepare GUI. Most curves present a…

Discussion

This protocol shows how to robustly acquire force spectroscopy nanoindentation data using a commercially available ferrule-top nanoindenter on both hydrogels and single cells. In addition, instructions for the use of an open-source software programmed in Python comprising a precise workflow for the analysis of nanoindentation data are provided.

Critical steps in the protocol
The following steps have been identified to be of particular importance when following this proto…

Declarações

The authors have nothing to disclose.

Acknowledgements

GC and MAGO acknowledge all members of the CeMi. MSS acknowledges support via an EPSRC Programme Grant (EP/P001114/1).

GC: software (contribution to software development and algorithms), formal analysis (analysis of nanoindentation data), validation, Investigation (nanoindentation experiments on polyacrylamide gels), data curation, writing (original draft, review and editing), visualization (figures and graphs). MAGO: investigation (preparation of gels and cells samples, nanoindentation experiments on cells), writing (original draft, review and editing), visualization (figures and graphs). NA: validation, writing (review and editing). IL: software (contribution to software development and algorithms), validation, writing (review and editing); MV: conceptualization, software (design and development of original software and algorithms), validation, resources, writing (original draft, review and editing), supervision, project administration, funding acquisition MSS: resources, writing (review and editing), supervision, project administration, funding acquisition. All authors read and approved the final manuscript.  

Materials

12 mm coverslips VWR 631-1577P
35 mm cell treated culture dishes Greiner CELLSTAR 627160
Acrylamide Sigma-Aldrich A4058
Acrylsilane Alfa Aesar L16400
Ammonium Persulfate Merk 7727-54-0
Bisacrylamide Merk 110-26-9
Chiaro nanoindenter Optics 11 Life  no catologue number
Ethanol general
Fetal bovine serum Gibco 16140071
High glucose DMEM Gibco 11995065
Isopropanol general
Kimwipe Kimberly Clark 21905-026
Microscope glass slides VWR 631-1550P
MilliQ system Merk Millipore ZR0Q008WW
OP1550 Interferometer Optics11 Life no catalogue number
Optics 11 Life probe (k = 0.02-0.005 N/m, R = 3-3.5 um) Optics 11 Life no catologue number
Optics 11 Life probe (k = 0.46-0.5 N/m, R = 50-55 um) Optics 11 Life no catologue number
Penicillin/Streptomycin Gibco 15140122
RainX rain repellent RainX 26012
Standard petri dishes (90 mm) Thermo Scientific 101RTIRR
Tetramethylethylenediamine Sigma-Aldrich 110-18-9
Vaccum dessicator Thermo Scientific 531-0250
Software
Data acquisition software (v 3.4.1) Optics 11 Life
GitHub Desktop (Optional) Microsoft
Python 3 Python Software Foundation
Visual Studio Code (Optional) Microsoft

Referências

  1. Discher, D. E., Janmey, P. Y. W. Tissue cells feel and respond to the stiffness of their substrate. Science. 310 (5751), 1139-1143 (2005).
  2. Roca-Cusachs, P., Conte, V., Trepat, X. Quantifying forces in cell biology. Nature Cell Biology. 19 (7), 742-751 (2017).
  3. Guimarães, C. F., Gasperini, L., Marques, A. P., Reis, R. L. The stiffness of living tissues and its implications for tissue engineering. Nature. Reviews. Materials. 5, 351-370 (2020).
  4. Moeendarbary, E., Harris, A. R. Cell mechanics: Principles, practices, and prospects. Wiley Interdisciplinary. Reviews. Systems. Biology and Medicine. 6 (5), 371-388 (2014).
  5. Butcher, D. T., Alliston, T., Weaver, V. M. A tense situation: Forcing tumour progression. Nature Reviews Cancer. 9 (2), 108-122 (2009).
  6. Kubánková, M., et al. Physical phenotype of blood cells is altered in COVID-19. Biophysical Journal. 120 (14), 2838-2847 (2021).
  7. Engler, A. J., Sen, S., Sweeney, H. L., Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell. 126, 677-689 (2006).
  8. Ciccone, G., et al. What caging force cells feel in 3D hydrogels: A rheological perspective. Advanced Healthcare Materials. 9 (17), 2000517 (2020).
  9. Wu, P. H., et al. A comparison of methods to assess cell mechanical properties. Nature Methods. 15 (7), 491-498 (2018).
  10. McKee, C. T., Last, J. A., Russell, P., Murphy, C. J. Indentation versus tensile measurements of young’s modulus for soft biological tissues. Tissue Engineering B Reviews. 17 (3), 155-164 (2011).
  11. Humphrey, J. D., Delange, S. L. . An Introduction to Biomechanics Solids and Fluids, Analysis and Design. , 271-371 (2004).
  12. Prevedel, R., Diz-Muñoz, A., Ruocco, G., Antonacci, G. Brillouin microscopy: an emerging tool for mechanobiology. Nature Methods. 16 (10), 969-977 (2019).
  13. Krieg, M., et al. Atomic force microscopy-based mechanobiology. Nature Reviews Physics. 1, 41-57 (2019).
  14. Norman, M. D. A., Ferreira, S. A., Jowett, G. M., Bozec, L., Gentleman, E. Measuring the elastic modulus of soft culture surfaces and three-dimensional hydrogels using atomic force microscopy. Nature Protocols. 16 (5), 2418-2449 (2021).
  15. Gavara, N. A beginner’s guide to atomic force microscopy probing for cell mechanics. Microscopy Research and Technique. 80 (1), 75-84 (2017).
  16. Whitehead, A. J., Kirkland, N. J., Engler, A. J. Atomic force microscopy for live-cell and hydrogel measurement. Methods in Molecular Biology. 2299, 217-226 (2021).
  17. Chavan, D., et al. Ferrule-top nanoindenter: An optomechanical fiber sensor for nanoindentation. The Review of Scientific Instruments. 83 (11), 115110 (2012).
  18. Van Hoorn, H., Kurniawan, N. A., Koenderink Ac, G. H., Iannuzzi, D. Local dynamic mechanical analysis for heterogeneous soft matter using ferrule-top indentation. Soft Matter. 12 (12), 3066-3073 (2016).
  19. Baldini, F., et al. Biomechanics of cultured hepatic cells during different steatogenic hits. Journal of the Mechanical Behavior of Biomedical Materials. 97, 296-305 (2019).
  20. Emig, R., et al. Piezo1 channels contribute to the regulation of human atrial fibroblast mechanical properties and matrix stiffness sensing. Cells. 10 (3), 663 (2021).
  21. Dobre, O., et al. A hydrogel platform that incorporates laminin isoforms for efficient presentation of growth factors – Neural growth and osteogenesis. Advanced Functional Materials. 31 (21), 2010225 (2021).
  22. Antonovaite, N., Beekmans, S. V., Hol, E. M., Wadman, W. J., Iannuzzi, D. Regional variations in stiffness in live mouse brain tissue determined by depth-controlled indentation mapping. Scientific Reports. 8 (1), 12517 (2018).
  23. Wu, G., Gotthardt, M., Gollasch, M. Assessment of nanoindentation in stiffness measurement of soft biomaterials: kidney, liver, spleen and uterus. Scientific Reports. 10 (1), 18784 (2020).
  24. Lüchtefeld, I., et al. Elasticity spectra as a tool to investigate actin cortex mechanics. Journal of Nanobiotechnology. 18 (1), 147 (2020).
  25. Caliari, S. R., Burdick, J. A. A practical guide to hydrogels for cell culture. Nature Methods. 13 (5), 405-414 (2016).
  26. Blumlein, A., Williams, N., McManus, J. J. The mechanical properties of individual cell spheroids. Scientific Reports. 7 (1), 7346 (2017).
  27. Mirsandi, H., et al. Influence of wetting conditions on bubble formation from a submerged orifice. Experiments in Fluids. 61, 83 (2020).
  28. Vassalli, M., Ciccone, G. . CellMechLab/NanoPrepare: v0.1.1. Zendo. , (2021).
  29. Vassalli, M., Ciccone, G., Lüchtefeld, I. CellMechLab/nanoindentation: v1.0.0. Zendo. , (2021).
  30. Savitzky, A., Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry. 36 (8), 1627-1639 (1964).
  31. Schafer, R. W. What is a savitzky-golay filter. IEEE Signal Processing Magazine. 28 (4), 111-117 (2011).
  32. Gavara, N. Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells. Scientific Reports. 6, 21267 (2016).
  33. Lin, D. C., Dimitriadis, E. K., Horkay, F. Robust strategies for automated AFM force curve analysis-I. Non-adhesive indentation of soft, inhomogeneous materials. Journal of Biomechanical Engineering. 129 (3), 430-440 (2007).
  34. Virtanen, P., et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods. 17 (3), 261-272 (2020).
  35. Tse, J. R., Engler, A. J. Preparation of hydrogel substrates with tunable mechanical properties. Current Protocols in Cell Biology. , (2010).
  36. Pharr, G. M., Oliver, W. C., Brotzen, F. R. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. Journal of Materials Research. 7 (3), 613-617 (1992).
  37. Kumar, R., Saha, S., Sinha, B. Cell spread area and traction forces determine myosin-II-based cortex thickness regulation. Biochimica et Biophysica Acta – Molecular Cell Research. 1866 (12), 118516 (2019).
  38. Kunda, P., Pelling, A. E., Liu, T., Baum, B. Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Current Biology: CB. 18 (2), 91-101 (2008).
  39. Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R., Kievit, R. A. Raincloud plots: a multi-platform tool for robust data visualization. Wellcome Open Research. 4, 63 (2019).
  40. Clark, A. G., Paluch, E. Mechanics and regulation of cell shape during the cell cycle. Results and Problems in Cell Differentiation. 53, 31-73 (2011).
  41. Langan, T. J., Rodgers, K. R., Chou, R. C. Synchronization of mammalian cell cultures by serum deprivation. Methods in Molecular Biology. 1524, 97-105 (2017).
  42. Hodgkinson, T., et al. The use of nanovibration to discover specific and potent bioactive metabolites that stimulate osteogenic differentiation in mesenchymal stem cells. Science Advances. 7 (9), 7921 (2021).
  43. Kloxin, A. M., Kloxin, C. J., Bowman, C. N., Anseth, K. S. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Advanced Materials (Deerfield Beach, Fla). 22 (31), 3484-3494 (2010).
  44. Loessner, D., et al. Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nature Protocols. 11 (4), 727-746 (2016).
  45. Yue, K., et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 73, 254-271 (2015).
  46. Sarrigiannidis, S. O., et al. A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Materials Today. Bio. 10, 100098 (2021).
  47. Karoutas, A., et al. The NSL complex maintains nuclear architecture stability via lamin A/C acetylation. Nature Cell Biology. 21 (10), 1248-1260 (2019).
  48. Ryu, H., et al. Transparent, compliant 3D mesostructures for precise evaluation of mechanical characteristics of organoids. Advanced Materials (Deerfield Beach, Fla). 33 (25), 2100026 (2021).
  49. Carvalho, D. T. O., Feijão, T., Neves, M. I., Da Silva, R. M. P., Barrias, C. C. Directed self-assembly of spheroids into modular vascular beds for engineering large tissue constructs Biofabrication Directed self-assembly of spheroids into modular vascular beds for engineering large tissue constructs. Biofabrication. 13 (3), 035008 (2021).
  50. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J., Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature. 584 (7822), 535-546 (2020).
  51. Cantini, M., Donnelly, H., Dalby, M. J., Salmeron-Sanchez, M. The plot thickens: The emerging role of matrix viscosity in cell mechanotransduction. Advanced Healthcare Materials. 9 (8), 1901259 (2020).
  52. Elosegui-Artola, A. The extracellular matrix viscoelasticity as a regulator of cell and tissue dynamics. Current Opinion in Cell Biology. 72, 10-18 (2021).
  53. Chaudhuri, O. Viscoelastic hydrogels for 3D cell culture. Biomaterials Science. 5 (8), 1480-1490 (2017).
  54. Nguyen, T. D., Gu, Y. Determination of strain-rate-dependent mechanical behavior of living and fixed osteocytes and chondrocytes using atomic force microscopy and inverse finite element analysis. Journal of Biomechanical Engineering. 136 (10), 101004 (2014).
  55. Mokbel, M., Hosseini, K., Aland, S., Fischer-Friedrich, E. The Poisson Ratio of the Cellular Actin Cortex Is Frequency Dependent. Biophysical Journal. 118 (8), 1968-1976 (2020).
  56. Javanmardi, Y., Colin-York, H., Szita, N., Fritzsche, M., Moeendarbary, E. Quantifying cell-generated forces: Poisson’s ratio matters. Communications Physics. 4, 237 (2021).
check_url/pt/63401?article_type=t

Play Video

Citar este artigo
Ciccone, G., Azevedo Gonzalez Oliva, M., Antonovaite, N., Lüchtefeld, I., Salmeron-Sanchez, M., Vassalli, M. Experimental and Data Analysis Workflow for Soft Matter Nanoindentation. J. Vis. Exp. (179), e63401, doi:10.3791/63401 (2022).

View Video