Summary

Isolation of Splenic Microvesicles in a Murine Model of Intraperitoneal Bacterial Infection

Published: April 13, 2022
doi:

Summary

Microvesicles shed from the plasma membrane act as cellular effectors. Spleen microvesicles (SMVs) are surrogate markers of pathophysiological conditions. In rats and mice, SMV content and properties characterize aging or inflammation and are altered by cytoprotective treatments, making them a valuable yet abundant monitoring tool for preclinical research.

Abstract

Microvesicles (MVs) are submicron fragments released from the plasma membrane of activated cells that act as proinflammatory and procoagulant cellular effectors. In rats, spleen MVs (SMVs) are surrogate markers of pathophysiological conditions. Previous in vitro studies demonstrated that Porphyromonas gingivalis (P. gingivalis), a major periodontal pathogen, enables the endothelial shedding and apoptosis while lipopolysaccharide (LPS) favors the shedding of splenocyte-derived microvesicles (SMVs). In vivo studies showed the feasibility of pharmacological control of SMV shedding. The present protocol establishes a standardized procedure for isolating splenic SMVs from the P. gingivalis acute murine infection model. P. gingivalis infection was induced in young C57BL/6 mice by intraperitoneal injection (three injections of 5 x 107 bacteria/week). After two weeks, the spleens were collected, weighed, and the splenocytes were counted. SMVs were isolated and quantified by protein, RNA, and prothrombinase assays. Cell viability was assessed by either propidium iodide or trypan blue exclusion dyes. Following splenocyte extraction, neutrophil counts were obtained by flow cytometry after 24 h of splenocyte culture. In P. gingivalis-injected mice, a 2.5-fold increase in spleen weight and a 2.3-fold rise in the splenocyte count were observed, while the neutrophils count was enhanced by 40-folds. The cell viability of splenocytes from P. gingivalis-injected mice ranged from 75%-96% and was decreased by 50% after 24 h of culture without any significant difference compared to unexposed controls. However, splenocytes from injected mice shed higher amounts of MVs by prothrombinase assay or protein measurements. The data demonstrate that the procoagulant SMVs are reliable tools to assess an early spleen response to intraperitoneal P. gingivalis infection.

Introduction

Microvesicles (MVs), also termed microparticles or ectosomes, are plasma membrane fragments with a diameter of 0.1-1.0 µm released in body fluids and the extracellular space in response to various cell stimuli. First identified as platelet dust exposing procoagulant phospholipids, mostly phosphatidylserine (PSer), MVs constitute an additional surface for the assembly of the blood coagulation complexes1,2. The key role of circulating MVs as procoagulant effectors has been demonstrated in patients with Scott syndrome2, a rare genetic disease that leads to dysfunctional PSer exposure and bleeding (Supplementary Figure 1). MVs have been extensively studied as circulating biomarkers of thrombotic risk in chronic diseases associated with cardiovascular disorders such as diabetes, chronic kidney disease, preeclampsia, and hypertension3,4. They are currently recognized as true cellular effectors in fluids or organ tissues like the myocardium1. Because they convey active proteins, lipids, and miRNA, they remotely modulate vascular responses such as hemostasis, inflammation, vascular angiogenesis, and vascular growth or tissue remodeling5.

While clinical studies examine the prognosis value of MVs concerning risk factors, MVs isolated from the patient's fluids or tissue enable the ex vivo assessment of their effector properties6. The deciphering of the mechanisms governing MV biogenesis and cross-talk abilities is generally achieved in cell culture models to identify active molecules exposed by or encapsulated within the MVs and their downstream signaling. The MV interactions with target cells will depend on membrane protein/protein binding, when appropriate counter-ligands are available, and/or lipid fusion7.

Under physiological conditions, MVs circulating in the plasma mostly originate from vascular cells, as identified by the lineage cluster differentiation markers (CD)8,9. However, in pathology, notably in cancer10 and graft rejection11,12, MVs are shed from the damaged tissue and bear noxious procoagulant and proinflammatory features. These are detected in the systemic circulation, making them useful probes for monitoring protective or rejuvenation therapies, and possible pharmacological targets13. Because MVs circulate as a dynamic storage pool reflecting vascular and tissue cell homeostasis in health and disease, a better understanding of their remote action also needs to be investigated in vivo, after IV injection or nasal instillation in small animals14,15. Indeed, MVs have been considered major contributors to the intricate pathways coupling exaggerated inflammation and thrombosis16.

Periodontitis is an inflammatory disease of infectious origin affecting tooth-supporting tissues17,18 and is associated with thrombotic risk. It is characterized by gingival bleeding, alveolar bone destruction, tooth mobility and can ultimately lead to tooth loss. Periodontitis is highly prevalent worldwide and affects more than 50% of the population, with 11% presenting a severe form19. Periodontitis is induced by bacterial dysbiosis of the subgingival biofilms, which sustain an exacerbated inflammatory response that triggers tissue destruction20. Over the last decade, periodontitis has been linked to systemic diseases such as cardiovascular disorders, diabetes, and rheumatoid arthritis. The possible explanations are the action of the periodontal pathogens at a distance and/or the increased systemic inflammation mediated by proinflammatory cytokines such as interleukin (IL-1, IL-6) and TNF-α21,22.

Among pathogens associated with the periodontitis onset and development, Porphyromonas gingivalis (P. gingivalis)23 is found in most severe lesions that harvest several virulence factors, including lipopolysaccharide (LPS)24 inducing Toll-like-receptor (TLR)-mediated inflammatory responses25 and the recruitment of neutrophils and polymorphonuclear leukocytes (PMNs) at the site of the initial infection26. The LPS from P. gingivalis activates TLR-4 or TLR-2, facilitating immune detection and bacterial survival evasion27. At the vascular level, activation of TLR2 by LPS is associated with immunothrombosis. The unique ability of P. gingivalis to prompt TLR-2 signaling while TLR-4-dependent recognition is significantly impaired favors persistent low-grade infection28,29.

In vivo procedures to study the MV responses to low-grade pathogen chronic and sustained infection are scarce. Methodological approaches for tissular MVs extraction are poorly described in the literature and generally concern the harvest of MVs from pathological tissues like solid tumors, liver steatosis, atherothrombotic plaques, or grafts11,29,30, while the spleen senses bacteria and viruses in the bloodstream. It also stores erythrocytes, platelets, lymphocytes, monocytes, basophils, and eosinophils involved in the immune response. Granulocytes like neutrophils from the red pulp also generate reactive oxygen species (ROS) and proteases that destroy pathogens and prevent infection from spreading31,32. Amazingly, and to the best of our knowledge, spleen MVs are not investigated in the context of pathogen-induced tissue insults. There is a global unmet need to study the variations of tissular MVs in physiopathology.

In vitro data from our laboratory showed that LPS induces the shedding of procoagulant MVs from rat splenocytes, which in turn prompt the senescence of cultured coronary endothelial cells and a consecutive proinflammatory and proinflammatory procoagulant endothelial phenotype11. The feasibility of the pharmacological control of the spleen MVs was further demonstrated after treating the animal with an optimized omega-3 formula. The oral gavage of middle-aged and aged rats was found to be protective against both the shedding of procoagulant MVs from splenocytes and their prosenescent noxious properties towards the coronary endothelium33.

Compared to blood, the spleen offers the advantage of being an important source of leukocytes in one individual. In addition, a splenic-cardiac axis has recently been proposed3,34, making the spleen a possible contributor to the infection-related cardiovascular risk of beneficial interest for pharmacological control. The assessment of the SMVs properties or release is key in understanding pathogen-induced or inflammatory responses. Interestingly, it can be achieved in treated animals and in different physiopathological models (age, hypertension, diabetes). Indeed, by comparing middle-aged and aged rats33, the differences in spleen MVs properties and release can be evidenced following a simple 24 h splenocyte culture.

Given the above evidences of the alteration of the effector properties of spleen MVs with the physiopathological condition and the feasibility of their pharmacological control in rats, a standardized protocol is described herein for the isolation of murine spleen MVs. The procedure would better fit in-depth investigations of the in vivo mechanisms supporting SMVs-mediated effects, eventually in engineered mice. The procedure was established in C57BL/6 mice using a local intraperitoneal infection by P. gingivalis, to establish proof of a remote action of the pathogen on spleen MV (SMV) effector properties.

Protocol

All experimental protocols were approved by and followed the relevant guidelines of the local Ethics Committee (APAFIS#28745-2020121815051557) and animal care of the home University and of the INSERM. Male Young C57BL/6 mice, 6-8 weeks of age, were used for the experiments. Mice were regularly examined to evaluate pain and stress, and their weights were monitored daily. Unless otherwise stated, all extracting buffers and solutions must be sterile and at room temperature. 1. Animal prepar…

Representative Results

The data provided give a full representation of the whole procedure, using two main animal conditions: control untreated young C57BL/6 mice and their littermates subjected to six intraperitoneal (IP) PG injections every 2 days, for 2 weeks. They also show the remote action of an intraperitoneal PG injection on the spleen response after 2 weeks. Splenocyte microvesicles were quantified by either prothrombinase enzymatic assay or by measuring their proteins and RNA concentration by spectrophotometric, and the proportion of…

Discussion

The present study confirms that the spleen is a major and reliable source of MVs with physiopathological relevance compared to other sources like blood, of limited volume in mice. Provided precautions are taken, the method is easy to set up and does not require expensive equipment. Since no alternate way other than in vivo assessment is available, the current model appears to be a valuable method to study the impact of pro-drugs on MV shedding. Importantly, the standardized protocol for harvesting murine splenic…

Declarações

The authors have nothing to disclose.

Acknowledgements

Authors are indebted to Claudine Ebel from the Service commun de cytométrie en flux (Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg) for expert assistance and formation to complex flow cytometry analysis of the spleen and Ali El Habhab for initial training on rat spleen cells labelling. Deniz Karagyoz helped in digging gathering literature. This work was partly supported by two ANR grants COCERP (N°A17R417B), ENDOPAROMP(N°ANR-17-CE17-0024-01).

Materials

2 mL tubes type Eppendorf Dutscher 54816 Conical bottom stériel microtubes
Allegra 64 R Centrifuge Beckman Coulter
Automatic cell counter Biorad
Bovine serum albumin Euromedex 04-100-812-E Prepared, filtered with 0.22 µm sieve and stored at 4 °C under sterile conditions by using the following formulas: 2 mM EDTA, 0,5% BSA and sterile PBS
CD11 (Mac-1) e-Biosciences 45-00112-80 Conjugated to eFluor 450; λmax excitation 405 nm λmax emission 445 nm
CD16/32 BD Biosciences 553142 unconjugated
EDTA Calbiochem Calbiochem S 6381-92-6
Falcon tube Cell star 227261 50 mL
Fetal Bovine serum Dutscher S1810-500 Batch number = S14028S1810
Fortessa Aria BD Biosciences for cell sorting
Fortessa flow cytometer Becton-Dickinson.
Fungizone PAN biotech P06-01050
HBSS Gibco 14175-053 Without phenol red, without Ca+2 and Mg+2
ICAM-1 abcam ab171123
LYG-6 (Gr-1) BD Biosciences 566218 Conjugated to BUV395; λmax excitation 348 nm, λmax emission 395 nm
Lysis buffer erythrocytes (ACK) Sigma Prepared, filtered with 0.22 µm sieve and stored at 4°C under sterile conditions by using the following formulas: NH4Cl, 0.15 M (molarity), 53.491 (mw) 4 g
KHCO3 1 mM (molarity) 100.115 (mw), 50 mg
EDTA  0.1 mM (molarity), 292.24 (mw), 14.6 g
pH: 7.2–7.4
NanoDrop 1000 spectrophotometer Thermoscientific
PBS Lonza 17-516F Without Ca+2  and Mg+2
Plastic petri dish 100 mm
Polystyren tube Falcon 352070
q-Nano Gold iZON science
RPMI 1640 culture medium: 2 g/L glucose PAN biotech p04-18047 Supplemented withsupplemented with Streptomycin (100 U/mL) /Penicillin (100 U/mL), Fungizone (250 mg/mL), L-glutamine (2 mM) and FBS 10%.
Scalpels
Sieve Nylon Falcon USA 352360 100 µm
Streptomycin/Penicillin PAN biotech P06-07100
Syringe 2 mL
Trypan Blue Biorad 1450013
VCAM1 abcam ab215380

Referências

  1. Loyer, X., et al. Intra-cardiac release of extracellular vesicles shapes inflammation following myocardial infarction. Circulation Research. 123 (1), 100-106 (2018).
  2. Aupeix, K., Toti, F., Satta, N., Bischoff, P., Freyssinet, J. M. Oyxsterols induce membrane procoagulant activity in monocytic THP-1 cells. Biochemical Journal. 314 (3), 1027-1033 (1996).
  3. Emami, S., et al. Antibiotic resistance pattern and distribution of pslA gene among biofilm producing Pseudomonas aeruginosa isolated from waste water of a burn center. Jundishapur Journal of Microbiology. 8 (11), 23669 (2015).
  4. Burger, D., et al. Microparticles: biomarkers and beyond. Clinical Science. 124 (7), 423-441 (2013).
  5. Braeckmans, K., et al. Sizing nanomatter in biological fluids by fluorescence single particle tracking. Nano Letters. 10 (11), 4435-4442 (2010).
  6. Chironi, G. N., et al. Endothelial microparticles in diseases. Cell and Tissue Research. 335 (1), 143-151 (2009).
  7. Meldolesi, J. Exosomes and ectosomes in intercellular communication. Current Biology. 28 (8), 435-444 (2018).
  8. Chen, T. S., et al. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Research. 38 (1), 215-224 (2010).
  9. Pirro, M., et al. Microparticles derived from endothelial progenitor cells in patients at different cardiovascular risk. Atherosclerosis. 197 (2), 757-767 (2008).
  10. Zahra, S., Anderson, J. A., Stirling, D., Ludlam, C. A. Microparticles, malignancy and thrombosis. British Journal of Haematology. 152 (6), 688-700 (2011).
  11. Amoura, L., et al. Assessment of plasma microvesicles to monitor pancreatic islet graft dysfunction: Beta cell- and leukocyte-derived microvesicles as specific features in a pilot longitudinal study. American Journal of Transplantation. 20 (1), 40-51 (2020).
  12. De Rop, C., et al. Evaluation of tissue factor bearing microparticles as biomarkers in allogeneic stem-cell transplantation. Transplantation. 92 (3), 351-358 (2011).
  13. de Abreu, R. C., et al. Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nature Reviews Cardiology. 17 (11), 685-697 (2020).
  14. Beitler, J. R., et al. Advancing precision medicine for acute respiratory distress syndrome. The Lancet Respiratory Medicine. 10 (1), 107-120 (2022).
  15. Porro, C., et al. Proinflammatory effect of cystic fibrosis sputum microparticles in the murine lung. Journal of Cystic Fibrosis. 12 (6), 721-728 (2013).
  16. Boisrame-Helms, J., et al. Lipid emulsions differentially affect LPS-induced acute monocytes inflammation: in vitro effects on membrane remodeling and cell viability. Lipids. 49 (11), 1091-1099 (2014).
  17. Kinane, D. F., Stathopoulou, P. G., Papapanou, P. N. Authors’ reply: Predictive diagnostic tests in periodontal diseases. Nature Reviews Disease Primers. 3 (1), (2017).
  18. Kinane, D. F., Stathopoulou, P. G., Papapanou, P. N. Periodontal diseases. Nature Reviews Disease Primers. 3 (1), 1-14 (2017).
  19. Kassebaum, D. K., Tedesco, L. A. The 21(st)-century dental curriculum: a framework for understanding current models. Journal of Dental Education. 81 (8), 13-21 (2017).
  20. Hajishengallis, G., Chavakis, T., Hajishengallis, E., Lambris, J. D. Neutrophil homeostasis and inflammation: novel paradigms from studying periodontitis. Journal of Leukocyte Biology. 98 (4), 539-548 (2015).
  21. Suh, J. S., et al. Periodontitis-induced systemic inflammation exacerbates atherosclerosis partly via endothelial-mesenchymal transition in mice. International Journal of Oral Science. 11 (3), 21 (2019).
  22. Bugueno, I. M., et al. Porphyromonas gingivalis triggers the shedding of inflammatory endothelial microvesicles that act as autocrine effectors of endothelial dysfunction. Scientific Reports. 10 (1), 1778 (2020).
  23. Hajishengallis, G., Lamont, R. J. Breaking bad: manipulation of the host response by Porphyromonas gingivalis. European Journal of Immunology. 44 (2), 328-338 (2014).
  24. Lamont, T., Worthington, H. V., Clarkson, J. E., Beirne, P. V. Routine scale and polish for periodontal health in adults. The Cochrane Database of Systematic Reviews. 12, (2018).
  25. Huck, O., et al. Reduction of articular and systemic inflammation by Kava-241 in a Porphyromonas gingivalis-induced arthritis murine model. Infection and Immunity. 86 (9), 00356 (2018).
  26. Sochalska, M., Potempa, J. Manipulation of neutrophils by Porphyromonas gingivalis in the development of periodontitis. Frontiers in Cellular and Infection Microbiology. 7, 197 (2017).
  27. Kocgozlu, L., Elkaim, R., Tenenbaum, H., Werner, S. Variable cell responses to P. gingivalis lipopolysaccharide. Journal of Dental Research. 88 (8), 741-745 (2009).
  28. Slocum, C., et al. Distinct lipid a moieties contribute to pathogen-induced site-specific vascular inflammation. PLOS Pathogens. 10 (7), 1004215 (2014).
  29. Thietart, S., Rautou, P. E. Extracellular vesicles as biomarkers in liver diseases: A clinician’s point of view. Journal of Hepatology. 73 (6), 1507-1525 (2020).
  30. Witek, R. P., et al. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells. Gastroenterology. 136 (1), 320-330 (2009).
  31. Tahir, F., Ahmed, J., Malik, F. Post-splenectomy sepsis: a review of the literature. Cureus. 12 (2), 6898 (2020).
  32. Hussain, M., Stover, C. M., Dupont, A. P. gingivalis in periodontal disease and atherosclerosis – scenes of action for antimicrobial peptides and complement. Frontiers in Immunology. 6, 45 (2015).
  33. Qureshi, A. W., et al. Ageing enhances the shedding of splenocyte microvesicles with endothelial pro-senescent effect that is prevented by a short-term intake of omega-3 PUFA EPA:DHA 6:1. Biochemical Pharmacology. 173, 113734 (2020).
  34. Dunford, A., Keramida, G., Anagnostopoulos, C. D., Michael Peters, A. The cardiosplenic axis: another obscure pathophysiological function of the spleen and its investigation using molecular imaging. Nuclear Medicine Communications. 38 (3), 205-208 (2017).
  35. Ford, R. J., Becker, F. F. The characterization of trypan blue-induced tumors in Wistar rats. The American Journal of Pathology. 106 (3), 326-331 (1982).
  36. Field, F. E., et al. Trypan blue: identification and teratogenic and oncogenic activities of its coloured constituents. Chemico-Biological Interactions. 16 (1), 69-88 (1977).
  37. Covarrubias, R., et al. Optimized protocols for isolation, fixation, and flow cytometric characterization of leukocytes in ischemic hearts. American Journal of Physiology – Heart and Circulatory Physiology. 317 (3), 658-666 (2019).
  38. El Habhab, A., et al. Significance of neutrophil microparticles in ischaemia-reperfusion: Proinflammatory effectors of endothelial senescence and vascular dysfunction. Journal of Cellular and Molecular Medicine. 24 (13), 7266-7281 (2020).
  39. Freyssinet, J. M. Cellular microparticles: what are they bad or good for. The Journal of Thrombosis and Haemostasist. 1 (7), 1655-1662 (2003).
This article has been published
Video Coming Soon
Keep me updated:

.

Citar este artigo
El Itawi, H., Batool, F., Stutz, C., Qureshi, A. W., El Ghazouani, F., Huck, O., Toti, F. Isolation of Splenic Microvesicles in a Murine Model of Intraperitoneal Bacterial Infection. J. Vis. Exp. (182), e63480, doi:10.3791/63480 (2022).

View Video