Summary

改善肾去神经支配缓解血管紧张素II.诱导的高血压

Published: May 26, 2022
doi:

Summary

在这里,我们提出了由血管紧张素II输注诱导的高血压小鼠肾交感神经去神经支配(RDN)的方案。该程序可重复,方便,并允许研究RDN对高血压和心脏肥大的调节机制。

Abstract

近年来,肾交感神经去神经支配(RDN)对血压的益处已在大量临床试验中得到证实。然而,RDN对高血压的调节机制仍然难以捉摸。因此,在小鼠中建立更简单的RDN模型至关重要。在这项研究中,将充满血管紧张素II的渗透迷你泵植入14周龄的C57BL / 6小鼠中。植入微型渗透泵一周后,使用苯酚对小鼠的双侧肾动脉进行改良的RDN程序。给予年龄性别匹配的小鼠盐水并作为假组。在基线时测量血压,随后每周测量血压,持续21天。然后,收集肾动脉,腹主动脉和心脏,使用H&E和Masson染色进行组织学检查。在这项研究中,我们提出了一种简单、实用、可重复和标准化的RDN模型,可以控制高血压,缓解心脏肥大。该技术可以去神经支配周围肾交感神经,而不会造成肾动脉损伤。与以前的模型相比,改进的RDN有助于研究高血压的病理生物学和病理生理学。

Introduction

高血压是全世界主要的慢性心血管疾病。不受控制的高血压可能会损害靶器官并导致心力衰竭、中风和慢性肾脏疾病1231991年至2007年间,中国的高血压患病率从20%上升到31%。在最近修订高血压诊断标准(130/80 mmHg)4后,中国成人高血压患者人数可能会翻一番。高血压可以通过药物控制,然而,大约20%的患者无法控制他们的高血压,即使以最大耐受剂量接受至少三种抗高血压药物(包括一种利尿剂),这可能导致耐药性高血压的发展5。

肾交感神经去神经支配(RDN)已被证明是高血压的潜在治疗方法。2009年,Krum及其同事首次报告了使用RDN进行难治性高血压治疗。结果发现经皮肾动脉消融术可有效引起患者持续性血压降低6.然而,Symplicity Hypertension 3 (HTN-3) 试验的失败阻碍了 RDN 7 的应用,使 RDN成为一种有争议的疗法。然而,RDN的前景尚未被排除。最近的临床试验,包括RADIANCE-HTN SOLO,SPYRAL HTN-OFF MED/ON MED和SPYRAL HTN-OFF MED Pivotal已经证实了RDN对高血压8,9101112的疗效。因此,需要进行更详细的机理研究来探索RDN的影响。

本研究的总体目的是证明如何修改小鼠中的RDN以产生更简单,更稳定的手术。大量的实验研究了RDN的各种方法,如血管内冷冻消融,体外超声和化学或神经毒素在不同动物模型中的局部应用1314151617。使用苯酚化学消融生成的RDN模型是研究交感神经激活对高血压发病机制的成熟实验模型。该模型是通过使用棉签10%苯酚/乙醇溶液对肾交感神经进行化学腐蚀而产生的18。一方面,常规RDN潜在地抑制肾交感神经活性,从而减少肾素分泌和钠重吸收,并增加肾血流量。另一方面,它抑制肾素-血管紧张素-醛固酮系统19。因此,RDN对高血压有有益的作用。然而,化学消融生成的RDN模型缺乏消融标准和消融时间,实验过程的细节尚不清楚。此外,没有可用的技术报告。在本报告中,我们描述了一种使用称重纸在血管紧张素II(Ang II)诱导的C57BL / 6小鼠高血压中用苯酚生成RDN模型的手术方案。我们用含有苯酚的称量纸包裹肾动脉并统一消融时间,这有助于建立更可重复、更可靠的 RDN 模型。该实验模型旨在评估RDN对高血压的影响。

Protocol

所有动物实验程序均符合实验动物护理和使用的相关伦理指南(NIH出版物编号85-23,2011年修订),并得到复旦大学附属华东医院动物研究委员会的批准。将14周龄雄性C57BL/6小鼠(28-30g)随机分为4组:假鼠组、假+Ang II组、RDN组、RDN+Ang II组,每组n = 6。所有动物均在24±1°C的温度受控室中在特定封闭的无病原体条件下饲养,光照/黑暗循环12小时,并随意获得标准啮齿动物食物和水。 <p class="jove_titl…

Representative Results

统计学所有数据均表示为平均值±标准偏差。单因素方差分析用于具有三个或更多条件的实验,然后进行Bonferroni事后检验以比较各个组。将等于或小于 0.05 的 p 值视为显著性。使用商业软件进行所有统计分析。 RDN后,Ang II引起的血压升高减弱在输注Ang II后1周观察到收缩压(SBP)显着升高。与Sham + Ang II组相比,RDN + Ang II组在RDN手术后21天显示SBP?…

Discussion

自症状性HTN-3试验725的阴性结果发表以来,RDN是否可以降低血压一直存在争议。然而,几项临床试验和动物实验已经证明了RDN对高血压人和动物的积极有效结果9,1011121314,1516</…

Declarações

The authors have nothing to disclose.

Acknowledgements

本研究得到了国家自然科学基金(81770420)、上海市科学技术委员会(20140900600)、上海市老年临床医学重点实验室(13dz2260700)、上海市临床重点专科(shslczdzk02801)和复旦大学附属华东医院老年冠状动脉疾病中心的支持。

Materials

Angiotensin II Sangon Biotech CAS:4474-91-3 To make a hypertensive animol model
Anti-Tyrosine Hydroxylase antibody Abcam ab137869 To evaluate the expression of TH of renal nerves
Blood Pressure Analysis Visitech Systems BP-2000 Measure the blood pressure of mice
Mini-osmotic pump DURECT Corporation CA 95014 To fill with Angiotensin II
Norepinephrine ELISA Kit Abcam ab287789 to measure renal norepinephrine levels
Phenol Sangon Biotech CAS:108-95-2 Damage the renal sympathetic nerve
Weighing paper Sangon Biotech F512112 To destroy renal nerve with weighing paper immersed with phenol; https://www.sangon.com/productDetail?productInfo.code=F512112. 

Referências

  1. Messerli, F. H., Rimoldi, S. F., Bangalore, S. The transition from hypertension to heart failure: Contemporary update. JACC Heart Failure. 5 (8), 543-551 (2017).
  2. Lackland, D. T., et al. Implications of recent clinical trials and hypertension guidelines on stroke and future cerebrovascular research. Stroke. 49 (3), 772-779 (2018).
  3. Rossignol, P., et al. The double challenge of resistant hypertension and chronic kidney disease. The Lancet. 386 (10003), 1588-1598 (2015).
  4. Du, X., Patel, A., Anderson, C. S., Dong, J., Ma, C. Epidemiology of cardiovascular disease in China and opportunities for improvement. JACC International. Journal of the American College of Cardiology. 73 (24), 3135-3147 (2019).
  5. Valenzuela, P. L., et al. Lifestyle interventions for the prevention and treatment of hypertension. Nature Review Cardiology. 18 (4), 251-275 (2021).
  6. Krum, H., et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. The Lancet. 373 (9671), 1275-1281 (2009).
  7. Bhatt, D. L., et al. A controlled trial of renal denervation for resistant hypertension. The New England Journal of Medicine. 370 (15), 1393-1401 (2014).
  8. Kjeldsen, S. E., Narkiewicz, K., Burnier, M., Oparil, S. Renal denervation achieved by endovascular delivery of ultrasound in RADIANCE-HTN SOLO or by radiofrequency energy in SPYRAL HTN-OFF and SPYRAL-ON lowers blood pressure. Blood Press. 27 (4), 185-187 (2018).
  9. Böhm, M., et al. Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre, randomised, sham-controlled trial. The Lancet. 395 (10234), 1444-1451 (2020).
  10. Azizi, M., et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. The Lancet. 391 (10137), 2335-2345 (2018).
  11. Kandzari, D. E., et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. The Lancet. 391 (10137), 2346-2355 (2018).
  12. Townsend, R. R., et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. The Lancet. 390 (10108), 2160-2170 (2017).
  13. Sun, X., et al. Renal denervation restrains the inflammatory response in myocardial ischemia-reperfusion injury. Basic Research in Cardiology. 115 (2), 15 (2020).
  14. Sharp, T. E., et al. Renal denervation prevents heart failure progression via inhibition of the renin-angiotensin system. Journal of the American College of Cardiology. 72 (21), 2609-2621 (2018).
  15. Wang, H., et al. Renal denervation attenuates progression of atherosclerosis in apolipoprotein E-deficient mice independent of blood pressure lowering. Hypertension. 65 (4), 758-765 (2015).
  16. Chen, H., et al. Renal denervation mitigates atherosclerosis in ApoE-/- mice via the suppression of inflammation. American Journal of Translational Research. 12 (9), 5362-5380 (2020).
  17. Wang, Y., et al. Renal denervation promotes atherosclerosis in hypertensive apolipoprotein E-deficient mice infused with Angiotensin II. Frontiers in Physiology. 8, 215 (2017).
  18. Eriguchi, M., Tsuruya, K. Renal sympathetic denervation in rats. Methods in Molecular Biology. 1397, 45-52 (2016).
  19. Thukkani, A. K., Bhatt, D. L. Renal denervation therapy for hypertension. Circulation. 128 (20), 2251-2254 (2013).
  20. Zhang, Y. J., et al. NAD(+) administration decreases microvascular damage following cardiac ischemia/reperfusion by restoring autophagic flux. Basic Research in Cardiology. 115 (5), 57 (2020).
  21. Wang, M., et al. Long-term renal sympathetic denervation ameliorates renal fibrosis and delays the onset of hypertension in spontaneously hypertensive rats. American Journal of Translational Research. 10 (12), 4042-4053 (2018).
  22. Lu, H., et al. Subcutaneous Angiotensin II infusion using osmotic pumps induces aortic aneurysms in mice. Journal of Visualized Experiments: JoVE. (103), e53191 (2015).
  23. Wilde, E., et al. Tail-cuff technique and its influence on central blood pressure in the mouse. Journal of the American Heart Association. 6 (6), 005204 (2017).
  24. Daugherty, A., Rateri, D., Hong, L., Balakrishnan, A. Measuring blood pressure in mice using volume pressure recording, a tail-cuff method. Journal of Visualized Experiments: JoVE. (27), e1291 (2009).
  25. Esler, M. Illusions of truths in the Symplicity HTN-3 trial: generic design strengths but neuroscience failings. Journal of the American Society of Hypertension. 8 (8), 593-598 (2014).
  26. Han, W., et al. Low-dose sustained-release deoxycorticosterone acetate-induced hypertension in Bama miniature pigs for renal sympathetic nerve denervation. Journal of the American Society of Hypertension. 11 (5), 314-320 (2017).
  27. Han, W., et al. The safety of renal denervation as assessed by optical coherence tomography: pre- and post-procedure comparison with multi-electrode ablation catheter in animal experiment. Hellenic Journal of Cardiology. 61 (3), 190-196 (2020).
  28. Cai, X., et al. Noninvasive stereotactic radiotherapy for renal denervation in a swine model. Journal of the American College of Cardiology. 74 (13), 1697-1709 (2019).
check_url/pt/63719?article_type=t

Play Video

Citar este artigo
Wang, M., Zhang, S., Han, W., Ye, M., Qu, X., Han, W. Improved Renal Denervation Mitigated Hypertension Induced by Angiotensin II Infusion. J. Vis. Exp. (183), e63719, doi:10.3791/63719 (2022).

View Video