Summary

Fabrication of Micro-Patterned Chip with Controlled Thickness for High-Throughput Cryogenic Electron Microscopy

Published: April 21, 2022
doi:

Summary

A newly developed micro-patterned chip with graphene oxide windows is fabricated by applying microelectromechanical system techniques, enabling efficient and high-throughput cryogenic electron microscopy imaging of various biomolecules and nanomaterials.

Abstract

A major limitation for the efficient and high-throughput structure analysis of biomolecules using cryogenic electron microscopy (cryo-EM) is the difficulty of preparing cryo-EM samples with controlled ice thickness at the nanoscale. The silicon (Si)-based chip, which has a regular array of micro-holes with graphene oxide (GO) window patterned on a thickness-controlled silicon nitride (SixNy) film, has been developed by applying microelectromechanical system (MEMS) techniques. UV photolithography, chemical vapor deposition, wet and dry etching of the thin film, and drop-casting of 2D nanosheet materials were used for mass-production of the micro-patterned chips with GO windows. The depth of the micro-holes is regulated to control the ice thickness on-demand, depending on the size of the specimen for cryo-EM analysis. The favorable affinity of GO toward biomolecules concentrates the biomolecules of interest within the micro-hole during cryo-EM sample preparation. The micro-patterned chip with GO windows enables high-throughput cryo-EM imaging of various biological molecules, as well as inorganic nanomaterials.

Introduction

Cryogenic electron microscopy (cryo-EM) has been developed to resolve the three-dimensional (3D) structure of proteins in their native state1,2,3,4. The technique involves fixing proteins in a thin layer (10-100 nm) of vitreous ice and acquiring projection images of randomly oriented proteins using a transmission electron microscope (TEM), with the sample maintained at liquid nitrogen temperature. Thousands to millions of projection images are acquired and used to reconstruct a 3D structure of the protein by computational algorithms5,6. For successful analysis with cryo-EM, cryo-sample preparation has been automated by plunge-freezing the equipment that controls the blotting conditions, humidity, and temperature. The sample solution is loaded onto a TEM grid with a holey carbon membrane, successively blotted to remove the excess solution, and then plunge-frozen with liquid ethane to produce thin, vitreous ice1,5,6. With the advances in cryo-EM and the automation of sample preparation7, cryo-EM has been increasingly used to solve the structure of proteins, including envelope proteins for viruses and ion channel proteins in the cell membrane8,9,10. The structure of envelope proteins of pathogenic viral particles is important for understanding viral infection pathology, as well as developing the diagnosis system and vaccines e.g., SARS-CoV-211, which caused the COVID-19 pandemic. Moreover, cryo-EM techniques have recently been applied to material sciences, such as for imaging beam-sensitive materials used in battery12,13,14 and catalytic systems14,15 and analyzing the structure of inorganic materials in solution-state16.

Despite noticeable developments in cryo-EM and relevant techniques, limitations exist in cryo-sample preparation, hindering high-throughput 3D structure analysis. Preparing a vitreous ice film with optimal thickness is especially important for obtaining the 3D structure of biological materials with atomic resolution. The ice must be thin enough to minimize background noise from electrons scattered by the ice and to prohibit overlaps of biomolecules along the electron beam path1,17. However, if the ice is too thin, it can cause protein molecules to align in preferred orientations or denature18,19,20. Therefore, the thickness of vitreous ice should be optimized depending on the size of the material of interest. Moreover, extensive effort is typically needed for the sample preparation and manual screening of ice and protein integrity on the prepared TEM grids. This process is extremely time-consuming, which hinders its efficiency for high-throughput 3D structure analysis. Therefore, improvements in the reliability and reproducibility of cryo-EM sample preparation would enhance the utilization of cryo-EM in structural biology and commercial drug discovery, as well as for material science.

Herein, we introduce microfabrication processes for making a micro-patterned chip with graphene oxide (GO) windows designed for high-throughput cryo-EM with controlled ice thickness21. The micro-patterned chip was fabricated using microelectromechanical system (MEMS) techniques, which can manipulate the structure and dimensions of the chip depending on the imaging purposes. The micro-patterned chip with GO windows has a microwell structure that can be filled with the sample solution, and the depth of the microwell can be regulated to control the thickness of the vitreous ice. The strong affinity of GO for biomolecules enhances the concentration of biomolecules for visualization, improving the efficiency of the structure analysis. Furthermore, the micro-patterned chip is composed of an Si frame, which provides high mechanical stability for the grid19, making it ideal for handling the chip during sample preparation procedures and cryo-EM imaging. Therefore, a micro-patterned chip with GO windows fabricated by MEMS techniques provides reliability and reproducibility of cryo-EM sample preparation, which can enable efficient and high-throughput structure analysis based on cryo-EM.

Protocol

1. Fabrication of micro-patterned chip with GO windows (Figure 1) Deposit the silicon nitride. Deposit low-stress silicon nitride (SixNy) on both sides of the Si wafer (4 inch diameter and 100 µm thickness) using low-pressure chemical vapor deposition (LPCVD) at 830 °C and a pressure of 150 mTorr, under a flow of 170 sccm dichlorosilane (SiH2Cl2, DCS) and 38 sccm ammonia (NH3<…

Representative Results

A micro-patterned chip with GO windows was fabricated by MEMS fabrication and 2D GO nanosheet transfer. Chips for micro-patterning were mass-produced, with about 500 chips produced from one 4 in wafer (Figure 1B and Figure 2A,B). The designs of the micro-patterned chips can be manipulated using different designs of the chromium mask (Figure 2) during the photolithography procedure. The fabricated micro-patterned chi…

Discussion

The microfabrication processes for producing micro-patterned chips with GO windows are introduced here. The fabricated micro-patterned chip is designed to regulate the thickness of the vitreous ice layer by controlling the depth of the micro-hole with GO windows depending on the size of the material to be analyzed. A micro-patterned chip with GO windows was fabricated using a series of MEMS techniques and a 2D nanosheet transfer method (Figure 1). The major advantage of using the MEMS fabric…

Declarações

The authors have nothing to disclose.

Acknowledgements

M.-H.K., S.K., M.L., and J.P. acknowledge the financial support from the Institute for Basic Science (Grant No. IBS-R006-D1). S.K., M.L., and J.P. acknowledge the financial support from Creative-Pioneering Researchers Program through Seoul National University (2021) and the NRF grant funded by the Korean government (MSIT; Grant Nos. NRF-2020R1A2C2101871, and NRF-2021M3A9I4022936). M.L. and J.P. acknowledge the financial support from the POSCO Science Fellowship of POSCO TJ Park Foundation and the NRF grant funded by the Korean government (MSIT; Grant No. NRF-2017R1A5A1015365). J.P. acknowledges the financial support from the NRF grant funded by the Korean government (MSIT; Grant No. NRF-2020R1A6C101A183), and the Interdisciplinary Research Initiatives Programs by College of Engineering and College of Medicine, Seoul National University (2021). M.-H.K. acknowledges the financial support from the NRF grant funded by the Korean government (MSIT; Grant No. NRF-2020R1I1A1A0107416612). The authors thank the staff and crew of the Seoul National University Center for Macromolecular and Cell Imaging (SNU CMCI) for their untiring efforts and perseverance with the cryo-EM experiments. The authors thank S. J. Kim of the National Center for Inter-university Research Facilities for assistance with the FIB-SEM experiments.

Materials

1-methyl-2-pyrrolidinone (NMP) Sigma Aldrich, USA 443778
Acetone
AFM Park Systems, South Korea NX-10
Aligner Midas System, South Korea MDA-600S
AZ 300 MIF developer AZ Electronic Materials USA Corp., USA 184411
Cryo-EM holder Gatan, USA 626 single tilt cryo-EM holder
Cryo-plunging machine Thermo Fisher SCIENTIFIC, USA Vitrobot Mark IV
Focused ion beam-scanning electron microscopy (FIB-SEM) FEI Company, USA Helios NanoLab 650
Glow discharger Ted Pella Inc., USA PELCO easiGlow
Graphene oxide (GO) solution Sigma Aldrich, USA 763705
Hexamethyldisizazne (HMDS), 98+% Alfa Aesar, USA 10226590
Low pressure chemical vapor deposition (LPCVD) Centrotherm, Germany LPCVD E1200
maP1205 positive PR Micro resist technology, Germany A15139
Potassium hydroxide (KOH), flake DAEJUNG CHEMICALS & METALS Co. LTD., South Korea 6597-4400
Raman Spectrometer NOST, South Korea Confocal Micro Raman System HEDA
Reactive ion etcher (RIE) Scientific Engineering, South Korea Lab-built
SEM Carl Zeiss, Germany SUPRA 55VP
Si wafer JP COMMERCE, South Korea 4" Silicon wafer, P(B)type, (100), 1-30ohm.c m, DSP, T:100um
Spin coater Dong Ah Trade Corp., South Korea ACE-200
TEM JEOL, Japan JEM-2100F

Referências

  1. Dillard, R. S., et al. Biological applications at the cutting edge of cryo-electron microscopy. Microscopy and Microanalysis. 24 (4), 406-419 (2018).
  2. Meyerson, J. R., et al. Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports. Scientific Reports. 4, (2014).
  3. Palovcak, E., et al. A simple and robust procedure for preparing graphene-oxide cryo-EM grids. Journal of Structural Biology. 204 (1), 80-84 (2018).
  4. Xu, B. J., Developments Liu, L. applications, and prospects of cryo-electron microscopy. Protein Science. 29 (4), 872-882 (2020).
  5. Stewart, P. L. Cryo-electron microscopy and cryo-electron tomography of nanoparticles. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology. 9 (2), (2017).
  6. Murata, K., Wolf, M. Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochimica Et Biophysica Acta-General Subjects. 1862 (2), 324-334 (2018).
  7. Darrow, M. C., et al. Chameleon: next generation sample preparation for cryoEM based on spotiton. Acta Crystallographica a-Foundation and Advances. 75, 424 (2019).
  8. Hite, R. K., Tao, X., MacKinnon, R. Structural basis for gating the high-conductance Ca2+-activated K+ channel. Nature. 541 (7635), 52-57 (2017).
  9. Zhang, Y., et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature. 546 (7657), 248-253 (2017).
  10. Shaik, M. M., et al. Structural basis of coreceptor recognition by HIV-1 envelope spike. Nature. 565 (7739), 318-323 (2019).
  11. Liu, C., et al. The architecture of inactivated SARS-CoV-2 with postfusion spikes revealed by cryo-EM and cryo-ET. Structure. 28 (11), 1218-1224 (2020).
  12. Ren, X. C., Zhang, X. Q., Xu, R., Huang, J. Q., Zhang, Q. Analyzing energy materials by cryogenic electron microscopy. Advanced Materials. 32 (24), 1908293 (2020).
  13. Li, Y. Z., et al. Atomic structure of sensitive battery materials and Interfaces revealed by cryo-electron microscopy. Science. 358 (6362), 506-510 (2017).
  14. Li, Y. B., Huang, W., Li, Y. Z., Chiu, W., Cui, Y. Opportunities for cryogenic electron microscopy in materials science and nanoscience. Acs Nano. 14 (8), 9263-9276 (2020).
  15. Kim, Y., et al. Uniform synthesis of palladium species confined in a small-pore zeolite via full ion-exchange investigated by cryogenic electron microscopy. Journal of Materials Chemistry A. 9 (35), 19796-19806 (2021).
  16. Baumgartner, J., et al. Nucleation and growth of magnetite from solution. Nature Materials. 12 (4), 310-314 (2013).
  17. Rice, W. J., et al. Routine determination of ice thickness for cryo-EM grids. Journal of Structural Biology. 204 (1), 38-44 (2018).
  18. D’Imprima, E., et al. Protein denaturation at the air-water interface and how to prevent it. Elife. 8, 42747 (2019).
  19. Alden, N. A., et al. Cryo-EM-on-a-chip: custom-designed substrates for the 3D analysis of macromolecules. Small. 15 (21), 1900918 (2019).
  20. Naydenova, K., Peet, M. J., Russo, C. J. Multifunctional graphene supports for electron cryomicroscopy. Proceedings of the National Academy of Sciences of the United States of America. 116 (24), 11718-11724 (2019).
  21. Kang, M. H., et al. Graphene oxide-supported microwell grids for preparing cryo-EM samples with controlled ice thickness. Advanced Materials. 33 (43), 2102991 (2021).
  22. Johra, F. T., Lee, J. W., Jung, W. G. Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry. 20 (5), 2883-2887 (2014).
  23. Yang, C., Pham, J. Characteristic study of silicon nitride films deposited by LPCVD and PECVD. Silicon. 10 (6), 2561-2567 (2018).
  24. Olson, J. M. Analysis of LPCVD process conditions for the deposition of low stress silicon nitride. Part I: preliminary LPCVD experiments. Materials Science in Semiconductor Processing. 5 (1), 51-60 (2002).
  25. Zheng, B. R., Zhou, C., Wang, Q., Chen, Y. F., Xue, W. Deposition of low stress silicon nitride thin film and its application in surface micromachining device structures. Advances in Materials Science and Engineering. 2013, 835942 (2013).
  26. Chuang, W. H., Fettig, R. K., Ghodssi, R. An electrostatic actuator for fatigue testing of low-stress LPCVD silicon nitride thin films. Sensors and Actuators a-Physical. 121 (2), 557-565 (2005).
  27. Shafikov, A., et al. Strengthening ultrathin Si3N4 membranes by compressive surface stress. Sensors and Actuators a-Physical. 317, 112456 (2021).
  28. Ng, W. H., et al. Controlling and modelling the wetting properties of III-V semiconductor surfaces using re-entrant nanostructures. Scientific Reports. 8, 3544 (2018).
  29. Han, D., et al. Nanopore-templated silver nanoparticle arrays photopolymerized in zero-mode waveguides. Frontiers in Chemistry. 7, 216 (2019).
  30. Escobedo, C. On-chip nanohole array based sensing: a review. Lab Chip. 13, 2445-2463 (2013).
check_url/pt/63739?article_type=t

Play Video

Citar este artigo
Kang, M., Lee, M., Kang, S., Park, J. Fabrication of Micro-Patterned Chip with Controlled Thickness for High-Throughput Cryogenic Electron Microscopy. J. Vis. Exp. (182), e63739, doi:10.3791/63739 (2022).

View Video