Summary

增强现实导航引导的股骨头坏死核心减压

Published: April 12, 2022
doi:

Summary

将增强现实技术应用于股骨头坏死的核心减压,实现该外科手术的实时可视化。该方法可有效提高岩心减压的安全性和精度。

Abstract

股骨头坏死(ONFH)是中青年患者中常见的关节疾病,严重负担他们的生活和工作。对于早期ONFH,核心减压手术是一种经典而有效的髋关节保护疗法。在Kirschner线核心减压的传统程序中,仍然存在许多问题,例如X射线暴露,反复穿刺验证以及对正常骨组织的损伤。穿刺过程的盲目性和无法提供实时可视化是这些问题的关键原因。

为了优化这一程序,我们的团队在增强现实(AR)技术的基础上开发了一种术中导航系统。该手术系统可以直观地显示手术区域的解剖结构,并将术前图像和虚拟针头实时渲染到术中视频中。在导航系统的引导下,外科医生可以准确地将Kirschner导线插入目标病变区域,并将附带损伤降至最低。我们用这个系统进行了10例核心减压手术。与传统程序相比,定位和透视的效率大大提高,穿刺的准确性也得到了保证。

Introduction

股骨头坏死(ONFH)是一种常见的致残性疾病,发生在年轻人中1。临床上,有必要根据 X 线、CT 和 MRI 确定 ONFH 的分期,以决定治疗策略(图 1)。对于早期ONFH,通常采用髋关节保留疗法2。核心减压(CD)手术是ONFH最常用的髋关节保留方法之一。已有报道,联合或不联合骨移植的核心减压治疗早期 ONFH 的某些疗效,可避免或延迟后续全髋关节置换术 (THA)345。然而,在以前的研究中,有或没有骨移植的克罗恩病的成功率报告不同,从64%到95%6789。手术技术,特别是钻孔位置的准确性,对于髋关节保留的成功非常重要10。由于穿刺和定位程序的失明,传统的CD技术存在几个问题,例如更多的透视时间,使用Kirschner线反复穿刺以及正常骨组织1112的损伤。

近年来,增强现实(AR)辅助方法已在骨科手术中引入13。AR技术可以直观地显示手术场的解剖结构,指导外科医生规划手术程序,从而降低手术难度。AR技术在椎弓根螺钉植入和关节关节置换术中的应用已有14,151617的报道。在这项研究中,我们的目标是将AR技术应用于CD程序,并验证其在临床实践中的安全性,准确性和可行性。

系统硬件组件
基于AR的导航手术系统的主要部件包括:(1)安装在手术区域正上方的深度摄像头(图2A);视频从中拍摄并发送回工作站,以便与成像数据进行注册和协作。(2)穿刺装置(图2B)和非侵入性体表标记框架(图2C),均带有被动红外反射器。红外设备可以捕获标记球的特殊反射涂层(图3),以实现对手术区域内手术设备的精确跟踪。(3)红外定位装置(图2D)负责跟踪手术区域的标记物,高精度匹配体表标记框和穿刺装置(图4)。(4)主机系统(图2E)是一个64位工作站,安装了自主研发的AR辅助骨科手术系统。髋关节和股骨头穿刺手术的增强现实显示可以在其辅助下完成。

Protocol

本研究经中日友好医院伦理委员会批准(批准号:2021-12-K04)。以下所有步骤均按照标准化程序进行,以避免对患者和外科医生造成伤害。本研究获得了患者的知情同意。外科医生必须熟练掌握传统的核心减压程序,以确保在导航不准确或其他意外情况下,手术可以以传统方式进行。 1. ONFH的术前诊断和分级 识别具有ONFH临床症状的患者;典型症状,例如腹?…

Representative Results

操作特点手术导航系统应用于9例患者的连续10个髋关节。手术平均总定位时间为10.1分钟(中位数9.5分钟,范围8.0-14.0分钟)。平均C-ARM透视率为5.5倍(中位数为5.5倍,范围为4-8倍)。穿刺精度的平均误差为1.61 mm(中位数为1.2 mm,范围为-5.76-19.73 mm; 表 1)。结果表明,与传统程序相比,定位时间和透视时间明显缩短。 临床结局评估入…

Discussion

虽然THA近年来发展迅速,成为ONFH的有效终极方法,但髋关节保存疗法在治疗早期ONFH1819中仍然起着重要作用。CD是一种基础有效的髋关节保留手术,它可以释放髋关节疼痛,延缓股骨头塌陷20的发生。局灶性坏死的穿刺定位是克罗恩病的关键程序,因为它决定了手术的成功或失败。然而,传统的穿刺定位方法仍然含有一些盲点,可能?…

Declarações

The authors have nothing to disclose.

Acknowledgements

本研究由北京市自然科学基金(7202183)、国家自然科学基金(81972107)和北京市科委(D171100003217001)资助。

Materials

AR-assisted Orthopedic Surgery System Self development None An operating software that implements AR for orthopedic surgery
Depth camera Stereolabs ZED depth camera(ZED mini) shoot video and sent back to the workstation.
Image processing software Adobe Systems Incorporated Adobe Photoshop CS6 Image processing software
Infrared positioning device Northern Digital Inc. NDI Polaris Spectra optical tracking device Tracking markers in the surgical area.
Puncture device Stryker Stryker System 7 Cordless driver and Sabo Insert kirschner wire into the necrotic area.

Referências

  1. Cohen-Rosenblum, A., Cui, Q. Osteonecrosis of the femoral head. Orthopedic Clinics of North America. 50 (2), 139-149 (2019).
  2. Migliorini, F., et al. Prognostic factors in the management of osteonecrosis of the femoral head: A systematic review. The Surgeon: journal of the Royal Colleges of surgeons of Edinburgh and Ireland. (21), 00199 (2022).
  3. Mont, M. A., Jones, L. C., Hungerford, D. S. Nontraumatic osteonecrosis of the femoral head: ten years later. The Journal of Bone and Joint Surgery. American Volume. 88 (5), 1117-1132 (2006).
  4. Wang, L., Tian, X., Li, K., Liu, C. Combination use of core decompression for osteonecrosis of the femoral head: A systematic review and meta-analysis using Forest and Funnel Plots. Computational and Mathematical Methods in Medicine. , 1284149 (2021).
  5. Hua, K. C., et al. The efficacy and safety of core decompression for the treatment of femoral head necrosis: a systematic review and meta-analysis. Journal of Orthopaedic Surgery and Research. 14 (1), 306 (2019).
  6. Ganz, R., Krushell, R. J., Jakob, R. P., Küffer, J. The antishock pelvic clamp. Clinical Orthopaedics and Related Research. 267, 71-78 (1991).
  7. Yoshikawa, K., et al. Training with hybrid assistive limb for walking function after total knee arthroplasty. Journal of Orthopaedic Surgery and Research. 13 (1), 163 (2018).
  8. Wu, C. T., Yen, S. H., Lin, P. C., Wang, J. W. Long-term outcomes of Phemister bone grafting for patients with non-traumatic osteonecrosis of the femoral head. International Orthopaedics. 43 (3), 579-587 (2019).
  9. Mont, M. A., Marulanda, G. A., Seyler, T. M., Plate, J. F., Delanois, R. E. Core decompression and nonvascularized bone grafting for the treatment of early stage osteonecrosis of the femoral head. Instructional Course Lectures. 56, 213-220 (2007).
  10. Wang, W., et al. Patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head. PLoS One. 12 (5), 0175366 (2017).
  11. Hoffmann, M. F., Khoriaty, J. D., Sietsema, D. L., Jones, C. B. Outcome of intramedullary nailing treatment for intertrochanteric femoral fractures. Journal of Orthopaedic Surgery and Research. 14 (1), 360 (2019).
  12. Dennler, C., et al. Augmented reality-based navigation increases precision of pedicle screw insertion. Journal of Orthopaedic Surgery and Research. 15 (1), 174 (2020).
  13. Yonezawa, H., et al. Low-grade myofibroblastic sarcoma of the levator scapulae muscle: a case report and literature review. BMC Musculoskeletal Disorders. 21 (1), 836 (2020).
  14. Tsukada, S., et al. Augmented reality- vs accelerometer-based portable navigation system to improve the accuracy of acetabular cup placement during total hip arthroplasty in the lateral decubitus position. The Journal of Arthroplasty. 37 (3), 488-494 (2021).
  15. Raymond, J., et al. Pharmacogenetics of direct oral anticoagulants: a systematic review. Journal of Personalized Medicine. 11 (1), 37 (2021).
  16. Bhatt, F. R., et al. Augmented reality-assisted spine surgery: an early experience demonstrating safety and accuracy with 218 screws. Global Spine Journal. , (2022).
  17. Weiss, H. R., Nan, X., Potts, M. A. Is there an indication for surgery in patients with spinal deformities? – A critical appraisal. The South African Journal of Physiotherapy. 77 (2), 1569 (2021).
  18. Boontanapibul, K., Amanatullah, D. F., Huddleston, J. I., Maloney, W. J., Goodman, S. B. Outcomes of cemented total knee arthroplasty for secondary osteonecrosis of the knee. The Journal of Arthroplasty. 36 (2), 550-559 (2021).
  19. Bakircioglu, S., Atilla, B. Hip preserving procedures for osteonecrosis of the femoral head after collapse. J Clin Orthop Trauma. 23, 101636 (2021).
  20. Ma, H. Y., et al. Core decompression with local administration of zoledronate and enriched bone marrow mononuclear cells for treatment of non-traumatic osteonecrosis of femoral head. Orthopaedic Surgery. 13 (6), 1843-1852 (2021).
  21. Hu, L., et al. Comparison of intramedullary nailing and plate fixation in distal tibial fractures with metaphyseal damage: a meta-analysis of randomized controlled trials. Journal of Orthopaedic Surgery and Research. 14 (1), 30 (2019).
  22. Pierannunzii, L. Endoscopic and arthroscopic assistance in femoral head core decompression. Arthroscopy Techniques. 1 (2), 225-230 (2012).
  23. Salas, A. P., et al. Hip arthroscopy and core decompression for avascular necrosis of the femoral head using a specific aiming guide: a step-by-step surgical technique. Arthroscopy Techniques. 10 (12), 2775-2782 (2021).
  24. Beer, A. J., Dijkgraaf, I. Editorial European journal of nuclear medicine and molecular imaging. European Journal of Nuclear Medicine and Molecular Imaging. 44 (2), 284-285 (2017).
  25. Negrillo-Cárdenas, J., Jiménez-Pérez, J. R., Feito, F. R. The role of virtual and augmented reality in orthopedic trauma surgery: From diagnosis to rehabilitation. Computer Methods and Programs in Biomedicine. 191, 105407 (2020).
  26. Brookes, M. J., et al. Surgical Advances in Osteosarcoma. Cancers. 13 (3), 388 (2021).
  27. Cho, H. S., et al. Can augmented reality be helpful in pelvic bone cancer surgery? an in vitro study. Clinical Orthopaedics and Related Research. 476 (9), 1719-1725 (2018).
check_url/pt/63806?article_type=t

Play Video

Citar este artigo
Wang, Q., Wang, Q., Ding, R., Yao, Y., Pan, J., Wang, W. Augmented Reality Navigation-Guided Core Decompression for Osteonecrosis of Femoral Head. J. Vis. Exp. (182), e63806, doi:10.3791/63806 (2022).

View Video