Summary

南瓜种间杂交的胚胎救援方案

Published: September 12, 2022
doi:

Summary

本文描述了一种胚胎救援方案,用于再生源自 葫芦 和葫芦 葫芦的种间杂交的未成熟胚胎。该协议可以很容易地复制,并将成为南瓜育种计划的重要资源。

Abstract

葫芦作物(南瓜)的种间杂交对于扩大遗传变异和有用等位基因的渗入是理想的。由这些宽杂交产生的未成熟胚胎必须使用适当的胚胎修复技术再生。虽然这种技术在许多作物中已经很成熟,但缺乏对允许其常规应用的适当南瓜方法的详细描述。在这里,我们描述了一种胚胎救援方案,可用于C. pepoC. moschata的种间杂交。为了确定胚胎救援的可行组合,进行了24个种间杂交。坐果从22个杂交中获得,表明成功率为92%。然而,获得的大多数果实都是单性生殖的,种子没有胚胎(空种子)。只有一个交叉组合包含可以使用基础植物生长培养基再生的未成熟胚胎。从种间F1果实中共抢救出10个胚胎,胚胎抢救成功率为80%。这里开发的胚胎救援方案将有助于南瓜育种项目中的种间杂交。

Introduction

葫芦(2n = 40)是葫芦科中一个高度多样化的属,包含27个不同的物种,其中5个被驯化1。其中,葫芦葫芦,C. pepoC. maxima是全球最具经济重要性的。在美国,C. moschataC. pepo是农业生产中最重要的两个物种。C. pepo 由四个亚种(卵形、卵形、花苔古马拉)组成,包含弯颈、直颈、橡子、扇贝、椰子、蔬菜骨髓、西葫芦和南瓜2345 的夏冬瓜品种组。C. moschata主要由冬瓜市场类型组成,包括胡桃,迪金森和奶酪组1。这两个物种在形态和表型上是多种多样的,C. pepo被认为是它的产量,早熟度,灌木生长习性以及多样化的果实性状,包括果实形状,果实大小,果肉颜色和外皮图案。另一方面,C. moschata因其对热量和湿度的适应以及抗病虫害而备受推崇67C. moschataC. pepo之间的种间杂交不仅是两个物种之间理想特征渗入的重要策略,而且还允许在育种计划中扩大遗传基础78

C. moschataC. pepo之间的早期杂交是为了确定它们的相容性和/或分类障碍910,11,而后来的研究主要集中在转移理想的性状121314两个物种之间的种间杂交旨在转移新性状,例如灌木或半灌木生长习性,提高C. pepo的产量以及抗病性,对非生物胁迫的适应性和增加C. moschata141516的活力。例如,C. pepo(P5)和C. moschata(MO3)之间的特定杂交导致更高的果实产量13,而C. moschata种质(尼日利亚本地和Menina)已被广泛用作栽培C. pepo品种中对potyvirus抗性的主要来源1718

先前的研究表明,C. moschataC. pepo之间的杂交是可能的,但很困难815。种间杂交可能导致没有坐果(流产),没有活种子的孤雌果实(空种子),未成熟胚胎无法发育的无籽果实(狭叶植物果实),或具有少量未成熟胚胎的果实可以通过胚胎救援拯救成成熟植物1516。例如,通过杂交C. pepo(餐桌女王,母系)与C. moschata(大奶酪,父系)没有获得可行的种子,但是,互惠杂交从134次授粉中产生了57个可行的种子9。Hayase仅在上午04:00使用在10°C下储存过夜19的花粉进行杂交时,才从C. moschataC. pepo杂交中获得活种子。Baggett将八个不同的C. moschata品种与C. pepo(熟食)杂交,并报告说,在103次总授粉中,获得了83种看起来正常的果实,但没有一个含有活种子8。在C. pepo(S179)和C. moschata(NK)的杂交中,Zhang等人获得了15个果实和2,994个种子,但其中只有12个种子是可行的,其余的只显示出基本的发育。这些研究表明,尽管C. moschataC. pepo之间的种间杂交是非常有益的,但从杂交中获得具有可行种子的果实需要16

胚胎抢救被认为是克服早期流产或发育不良引起的问题的适当方法,并且是最早和最成功的体外培养技术之一,用于再生未成熟胚胎1620。胚胎挽救涉及对发育不足/未成熟的胚胎进行体外培养,然后转移到无菌营养培养基中,以促进幼苗和最终成熟植物的恢复21。虽然胚胎抢救通常用于南瓜育种,但缺乏对允许其常规应用的适当方法的详细描述。利用胚胎抢救技术克服葫芦种种间杂交障碍早在1954年就有报道22。然而,早期研究中胚胎抢救的成功率要么没有报道,要么非常低。Metwally等人报告说,从C. pepoC. martinezii23杂交中分离出的100个种间杂交胚胎的成功率为10%(再生为成熟植物)。Sisko等人报道了从不同交叉组合获得的胚胎中胚胎再生的成功率不同:通过杂交C. maxima(Bos. Max)和C. pepo(淘金热)获得的杂交种的再生率为15.5%,C. pepo(西葫芦)和C. moschata(北海道)的再生率为20%,而C. pepo(淘金热)和C. moschata(Dolga)为37.5%24 除基因型外,培养基和体外培养条件是该技术成功的重要因素2526。在目前的研究中,测试了C. moschataC. pepo之间的各种杂交组合,并开发了一种在南瓜中利用胚胎救援技术的简单方法。开发一种简单且易于复制的胚胎拯救技术将促进南瓜育种项目中的种间杂交和种质增强。

Protocol

1. 种植和授粉 注意:重要的是要确定相容的基因型,其杂交将导致坐果和产生可行的胚胎。 种植条件和维护获得南瓜基因型(栽培品种/种质)的种子进行杂交(表1)。 用含有 1.38 g/kg N、1.38 g/kg P 和 1.38 g/kg K 的完整 NPK 肥料改良的盆栽培养基填充 50 个细胞起始平面(25 厘米宽 x 50 厘米长)。 播种到与其长度相等的深度…

Representative Results

坐果和种子活力进行了初步测试,以确定各种交叉组合中的坐果和种子活力。共选择15个南瓜基因型,4个C. pepo 和11个 C. moschata(表1)。在尝试的24种种间交叉组合中,有22种坐果(表2),坐果总体成功率为>92%。杂交O和M以及E和J未获得成熟果实,而杂交F和J获得的果实数量最多(n = 6)(表2)。不同杂交组合授粉的花朵数量从1到1…

Discussion

在C. moschataC. pepo之间成功的种间杂交有两个主要瓶颈:交叉相容性屏障,这是由产生杂交胚胎的基因型反应性决定的,以及受精后屏障,它阻碍杂交胚胎发育为正常种子。正如之前报道的南瓜一样,当前研究中的交叉相容性测试显示,大多数水果是单性生殖的,大多数种子无法存活16。亲本基因型对莫沙塔桔梗与桔梗种间杂交的相容性有较大影响。?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国农业部国家食品和农业研究所NRS项目编号的支持。FLA-TRC-006176和佛罗里达大学食品和农业科学研究所。

Materials

ampicillin Fisher Scientific BP1760-5
autoclave Steris AMSCO LAB 250
balance
cefotaxime Sigma Alfrich C 7039
centrifuge tubes (1.5 ml) Sigma Alfrich T9661
detergent
ethanol, 95% Decon Labs 2805HC
forceps VWR 82027-408
gellan gum Caisson Laboratories G024
growth chamber or illuminated shelf
laminar hood / biosafety cabinet The Baker Company, Inc Edgegard
masking tape Uline S-11735
media bottle
Murashige & Skoog Medium Research Products International M10200
NPK fertilizer (20-20-20) BWI Companies, Inc  PR200
Osmocote Plus fertilizer BWI Companie,s Inc OS90590
Parafilm M Sigma Alfrich P7793
Petri dish (60 x 15 mm) USA Scientific, Inc 8609-0160
plant pots BWI Companies, Inc NP4000BXL
plastic food containers, reused Oscar Mayer 4470003330
plastic hang tags Amazon B07QTZRY6T
potting mix Jolly Gardener Pro-Line C/B
seedling starter trays BWI Companies Inc GPPF128S4
syringe filter (0.22 um ) ExtraGene B25CA022-S
trellis support The Home Depot  2A060006
water bath

Referências

  1. Paris, H. S., Grumet, R., Katzir, N., Garcia-Mas, J. Genetic Resources of Pumpkins and Squash, Cucurbita spp. Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models. 20, (2016).
  2. Gong, L., Stift, G., Kofler, R., Pachner, M., Lelley, T. Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theoretical and Applied Genetics. 117 (1), 37-48 (2008).
  3. Paris, H. S., et al. Assessment of genetic relationships in Cucurbita pepo (Cucurbitaceae) using DNA markers. Theoretical and Applied Genetics. 106 (6), 971-978 (2003).
  4. Robinson, R. W., Decker-Walters, D. S. . Cucurbits. , (1997).
  5. Teppner, H. Cucurbita pepo (Cucurbitaceae)-history, seed coat types, thin coated seeds and their genetics. Phyton (Horn). 40 (1), 1-42 (2000).
  6. Hazra, P., Mandal, A. K., Dutta, A. K., Ram, H. H. Breeding pumpkin (Cucurbita moschata Duch. Ex Poir.) for fruit yield and other characters. International Journal of Plant Breeding. 1 (1), 51-64 (2007).
  7. Paris, H. S. History of the cultivar-groups of Cucurbita pepo. Horticultural Reviews-Westport Then New York. 25, 71 (2001).
  8. Baggett, J. R. Attempts to cross Cucurbita moschata (Duch.) Poir. ‘Butternut and C. pepo L. ‘Delicata’. The Cucurbit Genetics Cooperative. 2, 32-34 (1979).
  9. Erwin, A. T., Haber, E. S. Species and Varietal Crosses in Cucurbits. Agricultural Experiment Station, Iowa State College of Agriculture and Mechanical Arts. , (1929).
  10. Whitaker, T. W., Bohn, G. W. The taxonomy, genetics, production and uses of the cultivated species of Cucurbita. Economic Botany. 4 (1), 52-81 (1950).
  11. Bemis, W. P., Nelson, J. M. Interspecific hybridization within the genus Cucurbita I, fruit set, seed and embryo development. Journal of the Arizona Academy of Science. 2 (3), 104-107 (1963).
  12. Washek, R. L., Munger, H. M. Hybridization of Cucurbita pepo with disease resistant Cucurbita species. The Cucurbit Genetics Cooperative. 6, 92 (1983).
  13. Davoodi, S., Olfati, J. A., Hamidoghli, Y., Sabouri, A. Standard heterosis in Cucurbita moschata and Cucurbita pepo interspecific hybrids. International Journal of Vegetable Science. 22 (4), 383-388 (2016).
  14. De Oliveira, A. C. B., Maluf, W. R., Pinto, J. E. B., Azevedo, S. M. Resistance to papaya ringspot virus in summer squash Cucurbita pepo L. introgressed from an interspecific C. pepo× C. moschata cross. Euphytica. 132 (2), 211-215 (2003).
  15. Rakha, M. T., Metwally, E. I., Moustafa, S. A., Etman, A. A., Dewir, Y. H. Production of Cucurbita interspecific hybrids through cross pollination and embryo rescue technique. World Applied Sciences Journal. 20 (10), 1366-1370 (2012).
  16. Zhang, Q. I., Yu, E., Medina, A. Development of advanced interspecific-bridge lines among Cucurbita pepo, C. maxima, and C. moschata. HortScience. 47 (4), 452-458 (2012).
  17. Brown, R. N., Bolanos-Herrera, A., Myers, J. R., Miller Jahn, M. Inheritance of resistance to four cucurbit viruses in Cucurbita moschata. Euphytica. 129 (3), 253-258 (2003).
  18. Pachner, M., Paris, H. S., Winkler, J., Lelley, T. Phenotypic and marker-assisted pyramiding of genes for resistance to zucchini yellow mosaic virus in oilseed pumpkin (Cucurbita pepo). Plant Breeding. 134 (1), 121-128 (2015).
  19. Hayase, H. Cucurbita-crosses. XV. Flower pollination at 4 am in the production of C. pepo x C. moschata F1 hybrids. Japanese Journal of Breeding. 13 (2), 76-82 (1963).
  20. Reed, S. Embryo rescue. Plant development and biotechnology. , 235-239 (2004).
  21. Sharma, D. R., Kaur, R., Kumar, K. Embryo rescue in plants-a review. Euphytica. 89 (3), 325-337 (1996).
  22. Wall, J. R. Interspecific hybrids of Cucurbita obtained by embryo culture. Proceedings of the American Society of Horticultural Science. 63, 427-430 (1954).
  23. Metwally, E. I., Haroun, S. A., El-Fadly, G. A. Interspecific cross between Cucurbita pepo L. and Cucurbita martinezii through in vitro embryo culture. Euphytica. 90 (1), 1-7 (1996).
  24. Sisko, M., Ivancic, A., Bohanec, B. Genome size analysis in the genus Cucurbita and its use for determination of interspecific hybrids obtained using the embryo-rescue technique. Plant Science. 165 (3), 663-669 (2003).
  25. Giancaspro, A., et al. Optimization of an in vitro embryo rescue protocol for breeding seedless table grapes (Vitis vinifera L.) in Italy. Horticulturae. 8 (2), 121 (2022).
  26. Warchol, M., et al. The effect of genotype, media composition, pH and sugar concentrations on oat (Avena sativa L.) doubled haploid production through oat x maize crosses. Acta Physiologiae Plantarum. 40 (5), 1-10 (2018).
  27. Nepi, M., Pacini, E. Pollination, pollen viability and pistil receptivity in Cucurbita pepo. Annals of Botany. 72 (6), 527-536 (1993).
  28. Harvey, W. J., Grant, D. G., Lammerink, J. P. Physical and sensory changes during development and storage of buttercup squash. New Zealand Journal of Crop and Horticultural Science. 25 (4), 341-351 (1997).
  29. Moon, P., Meru, G. Embryo rescue of aged Cucurbita pepo seeds using squash rescue medium. Journal of Horticultural Science and Research. 2 (1), 62-69 (2018).
  30. Nuñez-Palenius, H. G., Ramírez-Malagón, R., Ochoa-Alejo, N. Muskmelon embryo rescue techniques using in vitro embryo culture. Plant Embryo Culture. , 107-115 (2011).
  31. Vining, K. J., Loy, J. B., McCreight, J. M. Seed development and seed fill in hull-less seeded cultigens of pumpkin (Cucurbita pepo L). Cucurbitaceae 98: Evaluation and Enhancement of Cucurbit Germplasm. , 64-69 (1998).
  32. Vining, K. J. . Seed development in hull-less-seeded pumpkin (Cucurbita pepo L.). , (1999).
check_url/pt/64071?article_type=t

Play Video

Citar este artigo
Fu, Y., Shrestha, S., Moon, P., Meru, G. Embryo Rescue Protocol for Interspecific Hybridization in Squash. J. Vis. Exp. (187), e64071, doi:10.3791/64071 (2022).

View Video