Summary

Cultivo e imágenes de cortes tumorales organotípicos ex vivo de pseudomixoma peritonei a partir de muestras tumorales humanas resecadas

Published: December 09, 2022
doi:

Summary

Describimos un protocolo para la producción, cultivo y visualización de cánceres humanos, que han hecho metástasis a las superficies peritoneales. Las muestras tumorales resecadas se cortan con un vibratomo y se cultivan en insertos permeables para aumentar la oxigenación y la viabilidad, seguidas de imágenes y análisis posteriores mediante microscopía confocal y citometría de flujo.

Abstract

El pseudomixoma peritonei (PMP) es una afección poco frecuente que resulta de la diseminación de un tumor primario mucinoso y la acumulación resultante de células tumorales secretoras de mucina en la cavidad peritoneal. La PMP puede surgir de varios tipos de cáncer, incluidos el apendicular, el ovárico y el colorrectal, aunque las neoplasias apendiculares son, con mucho, la etiología más común. La PMP es difícil de estudiar debido a su (1) rareza, (2) modelos murinos limitados y (3) histología mucinosa y acelular. El método presentado aquí permite la visualización e interrogación en tiempo real de estos tipos de tumores utilizando cortes organotípicos ex vivo derivados del paciente en una preparación donde el microambiente tumoral (TME) permanece intacto. En este protocolo, primero describimos la preparación de cortes tumorales utilizando un vibratomo y el posterior cultivo a largo plazo. En segundo lugar, describimos imágenes confocales de cortes tumorales y cómo monitorear las lecturas funcionales de viabilidad, imágenes de calcio y proliferación local. En resumen, las rebanadas se cargan con tintes de imagen y se colocan en una cámara de imágenes que se puede montar en un microscopio confocal. Los videos de lapso de tiempo y las imágenes confocales se utilizan para evaluar la viabilidad inicial y la funcionalidad celular. Este procedimiento también explora el movimiento celular traslacional y las interacciones de señalización paracrina en el TME. Por último, describimos un protocolo de disociación para cortes tumorales que se utilizarán para el análisis de citometría de flujo. El análisis cuantitativo de citometría de flujo se puede utilizar para pruebas terapéuticas de banco a cabecera para determinar los cambios que ocurren dentro del paisaje inmune y el contenido de células epiteliales.

Introduction

El pseudomixoma peritonei (PMP) es un síndrome raro con una tasa de incidencia de 1 por millón de personas por año1. La mayoría de los casos de PMP son causados por metástasis de neoplasias apendiculares. Dado que los ratones no tienen un apéndice similar al humano, modelar este tipo de cáncer sigue siendo extremadamente desafiante. Si bien la enfermedad primaria a menudo se puede curar mediante resección quirúrgica, las opciones de tratamiento para la enfermedad metastásica son limitadas. Por lo tanto, la razón para desarrollar este nuevo modelo de corte organotípico es estudiar la patobiología de PMP. Hasta la fecha, no hay modelos organoides apendiculares que puedan cultivarse perpetuamente; Sin embargo, un modelo reciente demostró ser útil para las pruebas farmacológicas de agentes terapéuticos e inmunoterapia2. Como tal, hemos adaptado un sistema organotípico de cultivo de cortes, que se ha utilizado en otros tipos de cánceres humanos, como cerebro, mama, páncreas, pulmón, ovario y otros 3,4,5,6.

Además de las neoplasias apendiculares, la PMP ocasionalmente resulta de otros tipos de tumores, incluidos los cánceres de ovario7 y, en raras circunstancias, las neoplasias mucinosas papilares intraductales8 y el cáncer de colon9. Además, estos tumores tienden a crecer lentamente, con tasas de injerto pobres en modelos de xenoinjerto derivado del paciente (PDX)10,11. Dados estos desafíos, existe una necesidad insatisfecha de desarrollar modelos para estudiar esta enfermedad para comenzar a comprender la patobiología de PMP y cómo estas células cancerosas: son reclutadas a las superficies peritoneales, proliferan y escapan a la vigilancia inmune.

Mientras se cortan de la circulación vascular sistémica, los cortes tumorales contienen componentes celulares y acelulares, incluyendo la matriz extracelular, las células del estroma, las células inmunes, las células cancerosas, las células endoteliales y los nervios. Este microambiente semiintacto permite la investigación funcional de estos tipos de células, lo que es excepcionalmente ventajoso en comparación con los cultivos de organoides 3D, que consisten solo en células cancerosas12. Si bien los cultivos de cortes organotípicos son ventajosos en algunos aspectos, también son inherentemente un enfoque basado en el bajo rendimiento, en comparación con los organoides 3D, que pueden expandirse y son adecuados para el cribado terapéutico de fármacos en investigación multiplexado13,14,15. En el caso de PMP, no ha habido informes que documenten el establecimiento confiable y el paso perpetuo de organoides derivados de PMP16. Esto probablemente se deba a la naturaleza de crecimiento lento de las células tumorales derivadas de PMP, así como al bajo número de células epiteliales malignas que se encuentran dentro de estos tumores mucinosos. Dada la necesidad de desarrollar modelos para estudiar PMP, los cortes organotípicos son especialmente adecuados para estudiar esta enfermedad. Presentamos un protocolo para preparar, obtener imágenes y analizar PMP de especímenes humanos.

Protocol

La desidentificación y adquisición de todos los tejidos se realizó bajo un protocolo aprobado por el IRB en la Universidad de California, San Diego. 1. Preparación de tejidos PMP humanos para procesamiento y cultivo de tejidos Transporte de tejidos tumorales y microdisecciónPreparar los medios de transporte y cultivo: completar 10% (v/v) Dulbecco’s Modified Eagle Media (DMEM), 10% FBS, 2 mM L-glutamina, 1% Penicilina/Estreptomicina (Pen Strep). <l…

Representative Results

En resumen, las muestras de tumores humanos de PMP se obtienen bajo un protocolo aprobado por el IRB. El tejido se prepara, se microdisecciona y se solidifica en un molde de agarosa para ser cortado con un vibratomo (Figura 1A; Video 1). Una vez cortados, los cortes de tejido se colocan y se cultivan en membranas de inserción permeables (Figura 1B), que se pueden utilizar para ensayos de imágenes in situ, así como para interrogación…

Discussion

Este manuscrito describe una técnica que se puede utilizar para cultivar, interrogar y analizar muestras tumorales de pseudomixoma peritonei humano (PMP). Hemos utilizado numerosos ensayos funcionales posteriores para interrogar el microambiente inmune del tumor y una plataforma para pruebas de banco a cabecera.

Si bien el método es altamente eficiente en nuestras manos, requerirá algo de práctica para cortar muestras tumorales usando un vibratomo. Es decir, encontramos problemas que se de…

Declarações

The authors have nothing to disclose.

Acknowledgements

Los autores desean agradecer a Kersi Pestonjamasp del centro central de imágenes del Moores Cancer Center por su ayuda con la subvención 2P30CA023100 del Centro de Apoyo Especializado para el Cáncer P30 del Centro de Apoyo Especializado para el Cáncer de UCSD con los microscopios. Este trabajo fue apoyado adicionalmente por una subvención de publicación JoVE (JRW), así como generosas donaciones del patrimonio de Elisabeth y Ad Creemers, la Fundación de la Familia Euske, el Fondo de Investigación del Cáncer Gastrointestinal y el Fondo de Investigación de Metástasis Peritoneal (AML).

Materials

1 M CaCl2 solution Sigma 21115
1 M HEPES solution Sigma H0887
1 M MgCl2 solution  Sigma M1028
100 micron filter ThermoFisher 22-363-549
22 x 40 glass coverslips Daiggerbrand G15972H
3 M KCl solution Sigma 60135
5 M NaCl solution Sigma S5150
ATPγS  Tocris  4080
Bovine Serum Albumin Sigma A2153
Calcein-AM  Invitrogen L3224
CD11b  Biolegend 101228
CD206  Biolegend 321140
CD3 Biolegend 555333
CD4  Biolegend 357410
CD45  Biolegend 304006
CD8  Biolegend 344721
CellTiter-Glo  Promega G9681
DMEM  Thermo Fisher 11965084
DPBS  Sigma Aldrich D8537
FBS, heat inactivated ThermoFisher 16140071
Fc-block  BD Biosciences 564220
Fluo-4 Thermo Fisher F14201
Gentle Collagenase/Hyaluronidase  Stem Cell 7912
Imaging Chamber Warner Instruments RC-26
Imaging Chamber Platform Warner Instruments PH-1
LD-Blue  Biolegend L23105
L-Glutamine 200 mM ThermoFisher 25030081
LIVE/DEAD imaging dyes Thermofisher R37601
Nikon Ti microscope  Nikon Includes: A1R hybrid confocal scanner including a high-resolution (4096×4096) scanner, LU4 four-laser AOTF unit with 405, 488, 561, and 647 lasers, Plan Apo 10 (NA 0.8), 20X (NA 0.9) dry objectives. 
Peristaltic pump  Isamtec ISM832C
Propidium Iodide Invitrogen L3224
Vacuum silicone grease Sigma Z273554-1EA

Referências

  1. Bevan, K. E., Mohamed, F., Moran, B. J. Pseudomyxoma peritonei. World Journal of Gastrointestinal Oncology. 2 (1), 44-50 (2010).
  2. Votanopoulos, K. I., et al. Appendiceal cancer patient-specific tumor organoid model for predicting chemotherapy efficacy prior to initiation of treatment: A feasibility study. Annals of Surgical Oncology. 26 (1), 139-147 (2019).
  3. Holliday, D. L., et al. The practicalities of using tissue slices as preclinical organotypic breast cancer models. Journal of Clinical Pathology. 66 (3), 253-255 (2013).
  4. Koerfer, J., et al. Organotypic slice cultures of human gastric and esophagogastric junction cancer. Cancer Medicine. 5 (7), 1444-1453 (2016).
  5. Misra, S., et al. Ex vivo organotypic culture system of precision-cut slices of human pancreatic ductal adenocarcinoma. Scientific Reports. 9 (1), 2133 (2019).
  6. Ohnishi, T., Matsumura, H., Izumoto, S., Hiraga, S., Hayakawa, T. A novel model of glioma cell invasion using organotypic brain slice culture. Pesquisa do Câncer. 58 (14), 2935-2940 (1998).
  7. Seidman, J. D., Elsayed, A. M., Sobin, L. H., Tavassoli, F. A. Association of mucinous tumors of the ovary and appendix. A clinicopathologic study of 25 cases. The Amerian Journal of Surgical Pathology. 17 (1), 22-34 (1993).
  8. Mizuta, Y., et al. Pseudomyxoma peritonei accompanied by intraductal papillary mucinous neoplasm of the pancreas. Pancreatology. 5 (4-5), 470-474 (2005).
  9. Gong, Y., Wang, X., Zhu, Z. Pseudomyxoma peritonei originating from transverse colon mucinous adenocarcinoma: A case report and literature review. Gastroenterology Research and Practice. 2020, 5826214 (2020).
  10. Fleten, K. G., et al. Experimental treatment of mucinous peritoneal metastases using patient-derived xenograft models. Translational Oncology. 13 (8), 100793 (2020).
  11. Kuracha, M. R., Thomas, P., Loggie, B. W., Govindarajan, V. Patient-derived xenograft mouse models of pseudomyxoma peritonei recapitulate the human inflammatory tumor microenvironment. Cancer Medicine. 5 (4), 711-719 (2016).
  12. Jiang, X., et al. Long-lived pancreatic ductal adenocarcinoma slice cultures enable precise study of the immune microenvironment. Oncoimmunology. 6 (7), 1333210 (2017).
  13. Sundstrom, L., Morrison, B., Bradley, M., Pringle, A. Organotypic cultures as tools for functional screening in the CNS. Drug Discovery Today. 10 (14), 993-1000 (2005).
  14. Liu, L., Yu, L., Li, Z., Li, W., Huang, W. Patient-derived organoid (PDO) platforms to facilitate clinical decision making. Journal of Translational Medicine. 19 (1), 40 (2021).
  15. Croft, C. L., Futch, H. S., Moore, B. D., Golde, T. E. Organotypic brain slice cultures to model neurodegenerative proteinopathies. Molecular Neurodegeneration. 14 (1), 45 (2019).
  16. Carr, N. J. New insights in the pathology of peritoneal surface malignancy. Journal of Gastrointestinal Oncology. 12, 216-229 (2021).
  17. Votanopoulos, K. I., et al. Outcomes of repeat cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for the treatment of peritoneal surface malignancy. Journal of the American College of Surgeons. 215 (3), 412-417 (2012).
  18. Weitz, J., et al. An ex-vivo organotypic culture platform for functional interrogation of human appendiceal cancer reveals a prominent and heterogenous immunological landscape. Clinical Cancer Research. 28 (21), 4793-4806 (2022).
  19. Pitoulis, F. G., Watson, S. A., Perbellini, F., Terracciano, C. M. Myocardial slices come to age: an intermediate complexity in vitro cardiac model for translational research. Cardiovascular Research. 116 (7), 1275-1287 (2020).
  20. Habeler, W., Peschanski, M., Monville, C. Organotypic heart slices for cell transplantation and physiological studies. Organogenesis. 5 (2), 62-66 (2009).
check_url/pt/64620?article_type=t

Play Video

Citar este artigo
Weitz, J., Montecillo Gulay, K. C., Hurtado de Mendoza, T., Tiriac, H., Baumgartner, J., Kelly, K., Veerapong, J., Lowy, A. M. Culture and Imaging of Ex Vivo Organotypic Pseudomyxoma Peritonei Tumor Slices from Resected Human Tumor Specimens. J. Vis. Exp. (190), e64620, doi:10.3791/64620 (2022).

View Video