Summary

Cultura Tridimensional de Tecido Adiposo Termogênico Vascularizado a partir de Fragmentos Microvasculares

Published: February 03, 2023
doi:

Summary

Aqui, apresentamos um protocolo detalhado delineando o uso de fragmentos microvasculares isolados de tecido adiposo humano ou de roedores como uma abordagem direta para a engenharia de tecido adiposo bege vascularizado funcional.

Abstract

A engenharia do tecido adiposo termogênico (por exemplo, tecido adiposo bege ou marrom) tem sido investigada como uma terapia potencial para doenças metabólicas ou para o design de microtecidos personalizados para triagem de saúde e testes de drogas. As estratégias atuais são frequentemente bastante complexas e falham em retratar com precisão as propriedades multicelulares e funcionais do tecido adiposo termogênico. Fragmentos microvasculares, pequenos microvasos intactos constituídos por arteríolas, vênulas e capilares isolados do tecido adiposo, servem como uma única fonte autóloga de células que permitem a vascularização e a formação de tecido adiposo. Este artigo descreve métodos para otimizar as condições de cultura para permitir a geração de tecido adiposo termogênico tridimensional, vascularizado e funcional a partir de fragmentos microvasculares, incluindo protocolos para isolamento de fragmentos microvasculares do tecido adiposo e condições de cultura. Adicionalmente, as melhores práticas são discutidas, assim como as técnicas de caracterização dos tecidos modificados, e resultados de amostras de fragmentos microvasculares de roedores e humanos são fornecidos. Essa abordagem tem potencial para ser utilizada para o entendimento e desenvolvimento de tratamentos para obesidade e doenças metabólicas.

Introduction

O objetivo deste protocolo é descrever uma abordagem para o desenvolvimento de tecido adiposo bege vascularizado a partir de uma única fonte potencialmente autóloga, o fragmento microvascular (MVF). Demonstrou-se que os tecidos adiposos marrom e bege exibem propriedades benéficas relacionadas à regulação metabólica; entretanto, o pequeno volume desses depósitos de tecido adiposo em adultos limita o potencial impacto sobre o metabolismo sistêmico, particularmente em condições de doenças como obesidade ou diabetes tipo 21,2,3,4,5,6,7. Há significativo interesse na gordura marrom/bege como alvo terapêutico para a prevenção dos efeitos metabólicos deletérios associados à obesidade e suas comorbidades 8,9,10,11,12.

As FVM são estruturas vasculares que podem ser isoladas diretamente do tecido adiposo, cultivadas e mantidas em uma configuração tridimensional por longos períodos de tempo13,14,15. Trabalhos anteriores de nosso grupo, entre outros, começaram a explorar a capacidade multicelular e multipotente das MVFs, especificamente no que se refere à formação de tecido adiposo16,17,18. Como um acúmulo deste trabalho, demonstramos recentemente que MVFs derivados de modelos de roedores com diabetes tipo 2 esaudáveis19 e de indivíduos humanos (adultos com mais de 50 anos de idade)20 continham células capazes de serem induzidas a formar tecido adiposo termogênico, ou bege.

Trata-se de uma abordagem inovadora a partir da qual se utiliza uma única fonte de FMV, capaz não só de criar tecido adiposo bege, mas também de seu componente vascular associado e crítico21. O uso dessa técnica pode ser de grande valia para estudos que buscam uma abordagem simples de engenharia tecidual para a formação de tecido adiposo termogênico. Ao contrário de outros métodos que aspiram a manipular tecido adiposo bege 22,23,24,25,26,27,28, o processo descrito neste estudo não requer o uso de múltiplos tipos celulares ou regimes complexos de indução. Modelos vascularizados de gordura bege e branca podem ser criados com MVFs provenientes de fontes de roedores e humanos, demonstrando grande potencial de tradução. O produto final deste protocolo é um tecido adiposo termogênico bege projetado com uma estrutura e função metabólica comparáveis ao tecido adiposo marrom. De modo geral, este protocolo apresenta a ideia de que uma FMVM de fonte facilmente acessível e possivelmente autóloga pode ser uma intervenção terapêutica e uma ferramenta valiosa para o estudo de distúrbios metabólicos.

Protocol

Este estudo foi conduzido em conformidade com a Lei de Bem-Estar Animal e os Regulamentos de Implementação de Bem-Estar Animal de acordo com os princípios do Guia para o Cuidado e Uso de Animais de Laboratório. Todos os procedimentos com animais foram aprovados pelo Comitê Institucional de Cuidados e Uso de Animais da Universidade do Texas em San Antonio. NOTA: Para as etapas descritas abaixo, são utilizados ratos Lewis machos. Pequenos ajustes no protocolo devem ser feitos para uma fêm…

Representative Results

Existem algumas características morfológicas fenotípicas importantes do tecido adiposo bege/marrom: é multilocular/contém pequenas gotículas lipídicas, possui um grande número de mitocôndrias (a razão de sua aparência caracteristicamente “acastanhada” in vivo), correspondentemente tem uma alta taxa de consumo de oxigênio/bioenergética mitocondrial, é altamente vascularizado, tem aumento da lipólise/captação de glicose estimulada por insulina e, mais notoriamente, expressa altos níveis de prote…

Discussion

O campo da engenharia do tecido adiposo marrom/bege é em grande parte imaturo 22,23,24,25,26,27,28, com a maior parte dos modelos adiposos sendo desenvolvidos para o tecido adiposo branco 8,22,31. …

Declarações

The authors have nothing to disclose.

Acknowledgements

Dr. Acosta é apoiado pelos subsídios do National Institutes of Health CA148724 e TL1TR002647. O Dr. Gonzalez é apoiado pelo Instituto Nacional de Diabetes e Doenças Digestivas e Renais dos Institutos Nacionais de Saúde, sob o número de prêmio F32-0DK122754. Este trabalho foi apoiado, em parte, pelo National Institutes of Health (5SC1DK122578) e pelo Departamento de Engenharia Biomédica da Universidade do Texas em San Antonio. O conteúdo é de responsabilidade exclusiva dos autores e não representa necessariamente a opinião oficial do National Institutes of Health. As figuras foram parcialmente criadas com Biorender.com.

Materials

Aminocaproic Acid Sigma Aldrich A2504-100G Added in DMEM at the concentration of 1 mg/mL
Blunt-Tipped Scissors Fisher scientific 12-000-172 Sterilize in autoclave
Bovin Serum Albumin (BSA) Millipore 126575-10GM Diluted in PBS to 4 mg/mL and 1 mg/mL
Collagenase Type 1 Fisher scientific NC9633623 Diluted to 6 mg/mL in BSA 4 mg/mL, Digestion of minced fat
Dexamethasone Thermo Scientific AC230302500 Diluted in ethanol at a 2 mg/ml stock concentration
Disposable underpads Fisher scientific 23-666-062 For fluid absorption during surgery
Dissecting Scissors Fisher scientific 08-951-5 Sterilize in autoclave
Dulbecco′s Modified Eagle′s Medium (DMEM) Fisher scientific 11885092
Dulbecco′s Modified Eagle′s Medium/Nutrient Mixture F-12 Ham (DMEM/F12) Sigma Aldrich D8062
Fetal Bovine Serum  Fisher scientific 16140089 Added in DMEM to 20% v/v.
Fibrinogen  Sigma Aldrich F8630-25G Solubilized in DMEM at the concentration of 20 mg/mL, Protein found in blood plasma and main component of hydrogel
Flask, 250 mL Fisher scientific FB500250 Allows for digestion of fat using a large surface area
Forceps Fisher scientific 50-264-21 Sterilize in autoclave, For handling of tissue and filters
Forskolin Sigma Aldrich F6886 Diluted in ethanol at a 10 mM stock concentration
Human MVF Advanced Solutions Life Scienes, LLC https://www.advancedsolutions.com/microvessels Human MVFs (hMVFs) isolated from three different patients (52-, 54-, and 56-year old females) were used in the current study. 
Indomethacine  Sigma Aldrich I7378 Diluted in ethanol at a 12.5 mM stock concentration
Insulin from porcine pancreas Sigma Aldrich I5523 Diluted in 0.01 N HCl at a 5 mg/ml stock concentration
MycoZap Fisher scientific NC9023832 Added in DMEM to 0.2% w/v, Mycoplasma Prophylactic 
Pennycilin/Streptomycin (10,000 U/mL) Fisher scientific 15140122 Added in DMEM to 1% v/v.
Petri dishes, polystyrene (100 mm x 15 mm). Fisher scientific 351029 3 for removal of blood vessels and mincing, 8 (lid) for presoaking of screens & 8 (dish) for use when filtering with 500 or 37 µM screens
Petri dishes, polystyrene (35 mm x 10 mm). Fisher scientific 50-202-036 For counting fragments
Phosphate Buffer Saline (PBS) Fisher scientific 14-190-250 Diluted to 1x with sterile deionized water.
Rat Clippers (Andwin Mini Arco Pet Trimmer) Fisher scientific NC0854141
Rosiglitazone Fisher scientific R0106200MG Diluted in DMSO at a 10 mM stock concentration
Scissors Fine Science Tools 14059-11 1 for initial incision, 1 for epididymal incision, 1 for tip clipping
Screen  37 µM  Carolina Biological Supply Company 652222R Cut into 3" rounded squares and sterilized in ethylene oxide, Fragment entrapment and removal of very small fragments/single cells and debris
Screen 500 µM  Carolina Biological Supply Company 652222F Cut into 3" rounded squares and sterilized in ethylene oxide, Removes larger fragments/debris
Serrated Hemostat Fisher scientific 12-000-171 Sterilize in autoclave, For clamping of skin before incision
Steriflip Filter 0.22 μm  Millipore SE1M179M6
Thrombin Fisher scientific 6051601KU Diluted in deionzed water to 10 U/mL, Used as a clotting agent turning fibrinogen to fibrin
Thyroid hormone (T3) Sigma Aldrich T2877 Diluted in 1N NaOH at a 0.02 mM stock concentration
Zucker diabetic fatty (ZDF) rats – obese (FA/FA) or lean (FA/+) male  Charles River https://www.criver.com/products-services/find-model/zdf-rat-lean-fa?region=3611
https://www.criver.com/products-services/find-model/zdf-rat-obese?region=3611
Obtained from Charles River (Wilmington, MA). Rats were acquired at 4 weeks of age and fed Purina 5008 until euthanasia (15-19 weeks of age). Glucose levels (blood from the lateral saphenous vein) were greater than 300 mg/dL in all FA/FA rats used in the study. All animals were housed in a temperature-controlled environment with a 12-h light-dark cycle and fed ad libitum.

Referências

  1. Cohen, P., Spiegelman, B. M. Brown and beige fat: molecular parts of a thermogenic machine. Diabetes. 64 (7), 2346-2351 (2015).
  2. Liu, X., et al. Brown adipose tissue transplantation reverses obesity in Ob/Ob mice. Endocrinology. 156 (7), 2461-2469 (2015).
  3. Tharp, K. M., Stahl, A. Bioengineering beige adipose tissue therapeutics. Frontiers in Endocrinology. 6, 164 (2015).
  4. Barquissau, V., et al. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Molecular Metabolism. 5 (5), 352-365 (2016).
  5. Kim, S. H., Plutzky, J. Brown fat and browning for the treatment of obesity and related metabolic disorders. Diabetes & Metabolism Journal. 40 (1), 12-21 (2016).
  6. Lizcano, F., Vargas, D. Biology of beige adipocyte and possible therapy for type 2 diabetes and obesity. International Journal of Endocrinology. 2016, 9542061 (2016).
  7. Mulya, A., Kirwan, J. P. Brown and beige adipose tissue: therapy for obesity and its comorbidities. Endocrinology and Metabolism Clinics of North America. 45 (3), 605-621 (2016).
  8. Murphy, C. S., Liaw, L., Reagan, M. R. In vitro tissue-engineered adipose constructs for modeling disease. BMC Biomedical Engineering. 1, 27 (2019).
  9. Srivastava, S., Veech, R. L. Brown and brite: The fat soldiers in the anti-obesity fight. Frontiers in Physiology. 10, 38 (2019).
  10. Samuelson, I., Vidal-Puig, A. Studying brown adipose tissue in a human in vitro context. Frontiers in Endocrinology. 11, 629 (2020).
  11. Wang, C. -. H., et al. CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Science Translational Medicine. 12 (558), (2020).
  12. Kaisanlahti, A., Glumoff, T. Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes. Journal of Physiology and Biochemistry. 75 (1), 1-10 (2019).
  13. Sato, N., et al. Development of capillary networks from rat microvascular fragments in vitro: the role of myofibroblastic cells. Microvascular Research. 33 (2), 194-210 (1987).
  14. Laschke, M. W., Später, T., Menger, M. D. Microvascular fragments: More than just natural vascularization units. Trends in Biotechnology. 39 (1), 24-33 (2021).
  15. Hoying, J. B., Boswell, C. A., Williams, S. K. Angiogenic potential of microvessel fragments established in three-dimensional collagen gels. In Vitro Cellular & Developmental Biology-Animal. 32 (7), 409-419 (1996).
  16. Acosta, F. M., Stojkova, K., Brey, E. M., Rathbone, C. R. A straightforward approach to engineer vascularized adipose tissue using microvascular fragments. Tissue Engineering. Part A. 26 (15-16), 905-914 (2020).
  17. Acosta, F. M., et al. Adipogenic differentiation alters properties of vascularized tissue-engineered skeletal muscle. Tissue Engineering. Part A. 28 (1-2), 54-68 (2021).
  18. Strobel, H. A., Gerton, T., Hoying, J. B. Vascularized adipocyte organoid model using isolated human microvessel fragments. Biofabrication. 13 (3), 035022 (2021).
  19. Acosta, F. M., et al. Engineering functional vascularized beige adipose tissue from microvascular fragments of models of healthy and type II diabetes conditions. Journal of Tissue Engineering. 13, 20417314221109337 (2022).
  20. Gonzalez Porras, M. A., Stojkova, K., Acosta, F. M., Rathbone, C. R., Brey, E. M. Engineering human beige adipose tissue. Frontiers in Bioengineering and Biotechnology. 10, 906395 (2022).
  21. Herold, J., Kalucka, J. Angiogenesis in adipose tissue: The interplay between adipose and endothelial cells. Frontiers in Physiology. 11, 1861 (2021).
  22. McCarthy, M., et al. Fat-On-A-Chip models for research and discovery in obesity and its metabolic comorbidities. Tissue Engineering Part B: Reviews. 26 (6), 586-595 (2020).
  23. Klingelhutz, A. J., et al. Scaffold-free generation of uniform adipose spheroids for metabolism research and drug discovery. Scientific Reports. 8 (1), 523 (2018).
  24. Yang, J. P., et al. Metabolically active three-dimensional brown adipose tissue engineered from white adipose-derived stem cells. Tissue Engineering. Part A. 23 (7-8), 253-262 (2017).
  25. Vaicik, M. K., et al. Hydrogel-based engineering of beige adipose tissue. Journal of Materials Chemistry B. 3 (40), 7903-7911 (2015).
  26. Tharp, K. M., Stahl, A. Bioengineering beige adipose tissue therapeutics. Frontiers in Endocrinology. 6, 164 (2015).
  27. Tharp, K. M., et al. Matrix-assisted transplantation of functional beige adipose tissue. Diabetes. 64 (11), 3713-3724 (2015).
  28. Harms, M. J., et al. Mature human white adipocytes cultured under membranes maintain identity, function, and can transdifferentiate into brown-like adipocytes. Cell Reports. 27 (1), 213-225 (2019).
  29. Frueh, F. S., Später, T., Scheuer, C., Menger, M. D., Laschke, M. W. Isolation of murine adipose tissue-derived microvascular fragments as vascularization units for tissue engineering. Journal of Visualized Experiments. (122), e55721 (2017).
  30. Cannon, B., Nedergaard, J. Brown adipose tissue: Function and physiological significance. Physiological Reviews. 84 (1), 277-359 (2004).
  31. Unser, A. M., Tian, Y., Xie, Y. Opportunities and challenges in three-dimensional brown adipogenesis of stem cells. Biotechnology Advances. 33, 962-979 (2015).
  32. Dani, V., Yao, X., Dani, C. Transplantation of fat tissues and iPSC-derived energy expenditure adipocytes to counteract obesity-driven metabolic disorders: Current strategies and future perspectives. Reviews in Endocrine & Metabolic Disorders. 23 (1), 103-110 (2022).
  33. Xu, X., et al. Adipose tissue-derived microvascular fragments as vascularization units for dental pulp regeneration. Journal of Endodontics. 47 (7), 1092-1100 (2021).
  34. McDaniel, J. S., Pilia, M., Ward, C. L., Pollot, B. E., Rathbone, C. R. Characterization and multilineage potential of cells derived from isolated microvascular fragments. Journal of Surgical Research. 192 (1), 214-222 (2014).
  35. Gealekman, O., et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation. 123 (2), 186-194 (2011).
  36. Altalhi, W., Hatkar, R., Hoying, J. B., Aghazadeh, Y., Nunes, S. S. Type I diabetes delays perfusion and engraftment of 3D constructs by impinging on angiogenesis; which can be rescued by hepatocyte growth factor supplementation. Cellular and Molecular Bioengineering. 12 (5), 443-454 (2019).
  37. Altalhi, W., Sun, X., Sivak, J. M., Husain, M., Nunes, S. S. Diabetes impairs arterio-venous specification in engineered vascular tissues in a perivascular cell recruitment-dependent manner. Biomaterials. 119, 23-32 (2017).
  38. Laschke, M. W., et al. Adipose tissue-derived microvascular fragments from aged donors exhibit an impaired vascularisation capacity. European Cells & Materials. 28, 287-298 (2014).
  39. Später, T., et al. Vascularization of microvascular fragment isolates from visceral and subcutaneous adipose tissue of mice. Tissue Engineering and Regenerative Medicine. 19 (1), 161-175 (2021).
  40. Später, T., et al. Adipose tissue-derived microvascular fragments from male and female fat donors exhibit a comparable vascularization capacity. Frontiers in Bioengineering and Biotechnology. 9, 777687 (2021).
  41. Laschke, M. W., Menger, M. D. The simpler, the better: tissue vascularization using the body’s own resources. Trends in Biotechnology. 40 (3), 281-290 (2022).
  42. Yang, F., Cohen, R. N., Brey, E. M. Optimization of co-culture conditions for a human vascularized adipose tissue model. Bioengenharia. 7 (3), 114 (2020).
  43. Pilkington, A. -. C., Paz, H. A., Wankhade, U. D. Beige adipose tissue identification and marker specificity-Overview. Frontiers in Endocrinology. 12, 599134 (2021).
  44. Chiou, G., et al. Scaffold architecture and matrix strain modulate mesenchymal cell and microvascular growth and development in a time dependent manner. Cellular and Molecular Bioengineering. 13 (5), 507-526 (2020).
check_url/pt/64650?article_type=t

Play Video

Citar este artigo
Acosta, F. M., Gonzalez Porras, M. A., Stojkova, K., Pacelli, S., Rathbone, C. R., Brey, E. M. Three-Dimensional Culture of Vascularized Thermogenic Adipose Tissue from Microvascular Fragments. J. Vis. Exp. (192), e64650, doi:10.3791/64650 (2023).

View Video