Summary

High-Resolution Fluoro-Respirometry of Equine Skeletal Muscle

Published: February 03, 2023
doi:

Summary

Horses have an exceptional aerobic exercise capacity, making equine skeletal muscle an important tissue for both the study of equine exercise physiology as well as mammalian mitochondrial physiology. This article describes techniques for the comprehensive assessment of mitochondrial function in equine skeletal muscle.

Abstract

Mitochondrial function-oxidative phosphorylation and the generation of reactive oxygen species-is critical in both health and disease. Thus, measuring mitochondrial function is fundamental in biomedical research. Skeletal muscle is a robust source of mitochondria, particularly in animals with a very high aerobic capacity, such as horses, making them ideal subjects for studying mitochondrial physiology. This article demonstrates the use of high-resolution respirometry with concurrent fluorometry, with freshly harvested skeletal muscle mitochondria, to quantify the capacity to oxidize substrates under different mitochondrial states and determine the relative capacities of distinct elements of mitochondrial respiration. Tetramethylrhodamine methylester is used to demonstrate the production of mitochondrial membrane potential resulting from substrate oxidation, including calculation of the relative efficiency of the mitochondria by calculating the relative membrane potential generated per unit of concurrent oxygen flux. The conversion of ADP to ATP results in a change in the concentration of magnesium in the reaction chamber, due to differing affinities of the adenylates for magnesium. Therefore, magnesium green can be used to measure the rate of ATP synthesis, allowing the further calculation of the oxidative phosphorylation efficiency (ratio of phosphorylation to oxidation [P/O]). Finally, the use of Amplex UltraRed, which produces a fluorescent product (resorufin) when combined with hydrogen peroxide, allows the quantification of reactive oxygen species production during mitochondrial respiration, as well as the relationship between ROS production and concurrent respiration. These techniques allow the robust quantification of mitochondrial physiology under a variety of different simulated conditions, thus shedding light on the contribution of this critical cellular component to both health and disease.

Introduction

The mitochondria of eukaryotic cells produce the majority of the ATP used by the cells for work and maintenance1. A key step in the mitochondrial production of ATP is the conversion of oxygen to water, and thus the metabolic capacity of mitochondria and the associated cells is frequently quantified through the measurement of oxygen consumption2. However, mitochondrial physiology is more complex than the simple process of oxygen consumption, and reliance on this endpoint exclusively provides an incomplete assessment of the impact of mitochondrial function and dysfunction on cellular health. Full characterization of mitochondrial function requires the assessment of not only oxygen consumption, but also the production of ATP as well as reactive oxygen species (ROS).

Additional measures of key mitochondrial functions can be accomplished concurrently with the measurement of respiration through the use of specific fluorophores. Tetramethylrhodamine methylester (TMRM) is a cationic fluorophore that accumulates in the mitochondrial matrix in proportion to the mitochondrial transmembrane voltage potential, resulting in a decrease in fluorescent intensity due to this accumulation3. TMRM can be used as an indicator of relative changes in mitochondrial membrane potential, or can be used to quantify precise changes in transmembrane voltage with additional experiments to determine constants that allow conversion of the fluorescent signal to mV. Magnesium green (MgG) is a fluorophore that fluoresces when bound with Mg2+, and is used for measurements of ATP synthesis based on the differential affinity of ADP and ATP for magnesium divalent cation4. Investigators must determine the specific affinity/dissociation constants (Kd) for both ADP and ATP under specific analytical conditions to convert the changes in MgG fluorescence to a change in ATP concentration. Amplex UltraRed (AmR) is the fluorophore used to measure the production of hydrogen peroxide and other ROS during mitochondrial respiration5. The reaction between H2O2 and AmR (which is catalyzed by horseradish peroxidase) produces resorufin, which is detectable through fluorescence at 530 nM. Each of these assays can be added individually to assays of real-time mitochondrial respiration, to provide concurrent measurements of the respective aspects of mitochondrial physiology, thus providing a direct link between respiration and mitochondrial output.

Horses are capable of very high rates of mass-specific oxygen consumption, due in part to the very high mitochondrial content of equine skeletal muscle, making this tissue highly relevant for studying mitochondrial physiology. With the development of high-resolution respirometry, studies using this novel technology have helped define the contributions of equine skeletal muscle mitochondria to both the remarkable exercise capacity of horses and the pathophysiology of skeletal muscle diseases6,7,8,9,10,11,12,13,14. Studies of equine skeletal muscle mitochondrial function are particularly advantageous, as obtaining large amounts of this tissue is non-terminal. Thus, equine subjects can not only provide sufficient tissue for the complete characterization of mitochondrial function, but also serve as longitudinal controls for high-quality, mechanistic studies into mitochondrial physiology. For this reason, additional assays to quantify mitochondrial membrane potential, ATP synthesis, and the production of ROS that complement the measurement of oxygen consumption in this tissue have been developed, in order to provide a more robust characterization of mitochondrial physiology in equine skeletal muscle.

Protocol

This study was approved by the Oklahoma State University Institutional Animal Care and Use Committee. Four Thoroughbred geldings (17.5 ± 1.3 years, 593 ± 45 kg) were used in this study to generate the representative results. 1. Obtaining skeletal muscle biopsy specimen Obtain skeletal muscle biopsies (follow sterile technique) from the center of the semitendinosus muscle (or other muscle of interest), using a 12 G University College Hospital (UCH) biopsy …

Representative Results

The proposed reference state is that of a healthy sedentary Thoroughbred (no increased fitness due to compulsory exercise) and a fresh muscle sample collected from the center of a postural muscle, containing a high percentage of mitochondria-rich type I skeletal muscle fibers and incubated under conditions approximating resting metabolism (i.e., 38 °C and pH 7.0). Under these conditions, the investigator can expect LN values of 2.71 ± 0.90, PN values of 62.40 ± 26.22, PN+S …

Discussion

The addition of fluorescent signals to the standard output of the high-resolution respirometer provides valuable information regarding mitochondrial physiology, but meticulous calibration of the fluorescent signal is critical for quality data. The original protocols for the use of MgG suggest that the calibration curves generated while calculating magnesium-adenylate dissociation constants could be applied to subsequent assays4; however, the fluorescent signal from the MgG may not be not sufficien…

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge the generous support of the John and Debbie Oxley Endowed Chair for Equine Sports Medicine and the Grayson Jockey Club Research Foundation.

Materials

ADP Sigma-Aldrich (MilliporeSigma) A5285
Amplex UltraRed Life Technologies A36006
ATP Sigma-Aldrich (MilliporeSigma) A2383
BSA Sigma-Aldrich (MilliporeSigma) A6003
Calcium carbonate Sigma-Aldrich (MilliporeSigma) C4830
CCCP Sigma-Aldrich (MilliporeSigma) C2759
DatLab 7.0 Oroboros Inc Software to operate O2K fluororespirometer
Dithiothreitol Sigma-Aldrich (MilliporeSigma) D0632
DTPA Sigma-Aldrich (MilliporeSigma) D1133
EGTA Sigma-Aldrich (MilliporeSigma) E4378
Glutamate Sigma-Aldrich (MilliporeSigma) G1626
HEPES Sigma-Aldrich (MilliporeSigma) H7523
Horseradish peroxidase Sigma-Aldrich (MilliporeSigma) P8250
Hydrogen peroxide Sigma-Aldrich (MilliporeSigma) 516813 Must be made fresh daily prior to assay
Imidazole Sigma-Aldrich (MilliporeSigma) I2399
K-MES Sigma-Aldrich (MilliporeSigma) M8250
Magnesium chloride hexahydrate Sigma-Aldrich (MilliporeSigma) M9272
Magnesium Green Thermo Fisher Scientific M3733
Malate Sigma-Aldrich (MilliporeSigma) M1000
Mannitol Sigma-Aldrich (MilliporeSigma) M9647
Mitochondrial isolation kit Sigma-Aldrich (MilliporeSigma) MITOISO1
O2K fluororespirometer Oroboros Inc Multiple units required to run full spectrum of assays concurrently.
Phosphocreatine Sigma-Aldrich (MilliporeSigma) P7936
Potassium hydroxide Sigma-Aldrich (MilliporeSigma) P1767
Potassium lactobionate Sigma-Aldrich (MilliporeSigma) L2398
Potassium phosphate Sigma-Aldrich (MilliporeSigma) P0662
Pyruvate Sigma-Aldrich (MilliporeSigma) P2256 Must be made fresh daily prior to assay
Rotenone Sigma-Aldrich (MilliporeSigma) R8875
Succinate Sigma-Aldrich (MilliporeSigma) S2378
Sucrose Sigma-Aldrich (MilliporeSigma) 84097
Superoxide dismutase Sigma-Aldrich (MilliporeSigma) S8160
Taurine Sigma-Aldrich (MilliporeSigma) T0625
Titration pump Oroboros Inc
Titration syringes Oroboros Inc
TMRM Sigma-Aldrich (MilliporeSigma) T5428
UCH biopsy needle Millenium Surgical Corp 72-238067 Available in a range of sizes

Referências

  1. Wilson, D. F. Energy metabolism in muscle approaching maximal rates of oxygen utilization. Medicine and Science in Sports and Exercise. 27 (1), 54-59 (1995).
  2. Gnaiger, E. . Mitochondrial Pathways and Respiratory Control. An Introduction to OXPHOS Analysis. 4th edn. , (2014).
  3. Ehrenberg, B., Montana, V., Wei, M. D., Wuskell, J. P., Loew, L. M. Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophysical Journal. 53 (5), 785-794 (1988).
  4. Chinopoulos, C., Kiss, G., Kawamata, H., Starkov, A. A. Measurement of ADP-ATP exchange in relation to mitochondrial transmembrane potential and oxygen consumption. Methods in Enzymology. 542, 333-348 (2014).
  5. Krumschnabel, G., et al. Simultaneous high-resolution measurement of mitochondrial respiration and hydrogen peroxide production. Methods in Molecular Biology. 1264, 245-261 (2015).
  6. Lemieux, H., et al. Mitochondrial function is altered in horse atypical myopathy. Mitochondrion. 30, 35-41 (2016).
  7. Houben, R., Leleu, C., Fraipont, A., Serteyn, D., Votion, D. M. Determination of muscle mitochondrial respiratory capacity in Standardbred racehorses as an aid to predicting exertional rhabdomyolysis. Mitochondrion. 24, 99-104 (2015).
  8. Votion, D. M., Gnaiger, E., Lemieux, H., Mouithys-Mickalad, A., Serteyn, D. Physical fitness and mitochondrial respiratory capacity in horse skeletal muscle. PLoS One. 7 (4), 34890 (2012).
  9. Votion, D. M., et al. Alterations in mitochondrial respiratory function in response to endurance training and endurance racing. Equine Veterinary Journal Supplement. (38), 268-274 (2010).
  10. Tosi, I., et al. Altered mitochondrial oxidative phosphorylation capacity in horses suffering from polysaccharide storage myopathy. Journal of Bioenergetics and Biomembranes. 50 (5), 379-390 (2018).
  11. Davis, M. S., Fulton, M. R., Popken, A. A. Effect of hyperthermia and acidosis on equine skeletal muscle mitochondrial oxygen consumption. Comparative Exercise Physiology. 17 (2), 171-179 (2021).
  12. Latham, C. M., Fenger, C. K., White, S. H. RAPID COMMUNICATION: Differential skeletal muscle mitochondrial characteristics of weanling racing-bred horses1. Journal of Animal Science. , (2019).
  13. White, S. H., Warren, L. K., Li, C., Wohlgemuth, S. E. Submaximal exercise training improves mitochondrial efficiency in the gluteus medius but not in the triceps brachii of young equine athletes. Scientific Reports. 7 (1), 14389 (2017).
  14. White, S. H., Wohlgemuth, S., Li, C., Warren, L. K. Rapid communication: Dietary selenium improves skeletal muscle mitochondrial biogenesis in young equine athletes. Journal of Animal Science. 95 (9), 4078-4084 (2017).
  15. Doerrier, C., et al. High-resolution FluoRespirometry and OXPHOS protocols for human cells, permeabilized fibers from small biopsies of muscle, and isolated mitochondria. Methods in Molecular Biology. 1782, 31-70 (2018).
  16. Li, C., White, S. H., Warren, L. K., Wohlgemuth, S. E. Effects of aging on mitochondrial function in skeletal muscle of American American Quarter Horses. Journal of Applied Physiology. 121 (1), 299-311 (2016).
  17. Komlodi, T., et al. Comparison of mitochondrial incubation media for measurement of respiration and hydrogen peroxide production. Methods in Molecular Biology. 1782, 137-155 (2018).
  18. Gnaiger, E. Mitochondrial physiology. Bioenergetic Communications. , (2020).
  19. Li Puma, L. C., et al. Experimental oxygen concentration influences rates of mitochondrial hydrogen peroxide release from cardiac and skeletal muscle preparations. American Journal of Physiology: Regulatory, Integrated, and Comparative Physiology. 318 (5), 972-980 (2020).
check_url/pt/65075?article_type=t

Play Video

Citar este artigo
Davis, M. S., Barrett, M. R. High-Resolution Fluoro-Respirometry of Equine Skeletal Muscle. J. Vis. Exp. (192), e65075, doi:10.3791/65075 (2023).

View Video