Summary

类风湿性关节炎患者运动计划后通过生物电阻抗分析评估水合作用和体细胞质量的变化

Published: July 14, 2023
doi:

Summary

该协议在为类风湿性关节炎患者设计的动态锻炼计划之后,使用生物电阻抗矢量分析评估水合作用和体细胞质量状态的改变。动态锻炼计划本身很详细,突出了其专注于心血管能力、力量和协调性的组成部分。该协议详细说明了步骤、仪器和限制。

Abstract

类风湿性关节炎(RA)是一种使人衰弱的疾病,可导致类风湿恶病质等并发症。虽然体育锻炼已显示出对类风湿性关节炎患者的益处,但其对水合作用和身体细胞质量的影响仍不确定。疼痛、炎症和关节变化的存在通常会限制活动,并且由于水合作用水平的改变,使传统的身体成分评估变得不可靠。生物电阻抗是估计身体成分的常用方法,但它有局限性,因为它主要是为普通人群开发的,没有考虑身体成分的变化。另一方面,生物电阻抗矢量分析(BIVA)提供了一种更全面的方法。BIVA涉及以图形方式解释电阻(R)和电抗(Xc),并根据高度进行调整,以提供有关水合状态和细胞团完整性的宝贵信息。

本研究纳入了 12 名患有 RA 的女性。在研究开始时,使用 BIVA 方法获得水合作用和体细胞质量测量值。随后,患者参加了为期六个月的动态锻炼计划,包括心血管能力、力量和协调训练。为了评估水合作用和体细胞质量的变化,使用BIVA置信度软件比较了R和Xc参数的差异,并根据身高进行了调整。结果显示出明显的变化:锻炼计划后电阻降低,而电抗增加。BIVA作为一种分类方法,可以有效地将患者分为脱水、水合过度、正常、运动员、瘦、恶病质和肥胖类别。这使其成为评估 RA 患者的宝贵工具,因为它提供独立于体重或预测方程的信息。总体而言,BIVA在这项研究中的实施揭示了锻炼计划对RA患者水合作用和体细胞质量的影响。它的优势在于它能够提供全面的信息,并克服了传统身体成分评估方法的局限性。

Introduction

类风湿性关节炎 (RA) 是一种致残性疾病,由于急性关节疼痛、肌肉力量下降和身体机能受损而影响患者的功能和独立性,所有这些都与疾病固有的炎症过程有关 1,2。在晚期,持续的炎症会导致结构改变,导致畸形、关节功能障碍和类风湿恶病质,这是这些患者的不良预后因素 3,4

类风湿恶病质的特征是身体成分的改变,例如肌肉损失,体重稳定和脂肪量增加,这会显着影响这些患者的生活质量 3,5,6有多种技术可用于评估身体成分,其中最广泛使用的是生物电阻抗分析(BIA)。然而,当常规 BIA 分析用于身体成分改变的受试者时,估计可能会受到限制,因为它们基于为健康或正常水合人群制定的预测方程 7,8

另一种称为生物电阻抗矢量分析(BIVA)的方法利用基于图形RXc的阻抗矢量。它利用针对高度校正的阻抗、电阻 (R) 和电抗 (Xc) 数据,从而生成一个载体,提供有关细胞团水合状态和完整性的信息。BIVA 能够将患者分为脱水、水合过度、正常、运动员、瘦、恶病质和肥胖等类别,使其成为 RA 患者的宝贵工具 8,9,10位于主轴上方或下方(椭圆的左半部分或右半部分)的向量分别与软组织中较高和较低的细胞质量相关。平行于长轴的矢量的向前和向后位移与脱水和液体超负荷有关。运动员被定义为细胞质量较高的个体,可能伴有脱水。瘦分类是指细胞质量较低的人,可能伴有脱水,肥胖分类适用于细胞质量较高的个体,可能伴有液体超负荷。BIVA对恶病质的分类由高电阻和低电抗值决定,由矢量向图右侧的移动表示,表明细胞质量减少,可能伴有水合状态的改变11图1)。

RA 的常规药物治疗主要侧重于减轻疼痛、炎症和关节损伤进展,对身体成分的改变关注有限12.在该人群常用的非药物疗法中,基于运动的干预措施在改善功能、疲劳、疼痛、关节活动度、有氧能力、肌肉力量、耐力、柔韧性和心理健康方面显示出积极成果。重要的是,这些干预措施已被证明可以在不加重症状或导致关节损伤的患者中实现这些益处,而没有广泛的预先存在的损伤13,14,15,16,17。然而,关于实施和评估该人群运动干预后水合作用和体细胞质量状态变化的知识有限。这些患者经常经历疼痛、炎症和结构性关节变化,限制了他们可以从事的活动类型,并使使用传统方法的身体成分评估进一步复杂化。该协议旨在演示在为类风湿性关节炎患者实施动态锻炼计划后,如何使用生物电阻抗矢量分析评估水合作用和体细胞质量状态的变化。此外,该协议还提供了动态锻炼计划的详细信息,包括心血管能力、力量和协调成分,以及步骤、工具、限制和一般注意事项。

Protocol

本方案由国家医学科学与营养研究所萨尔瓦多·祖比兰(参考文献:1347)的人类研究和伦理委员会指南批准并遵循。在参与本研究之前,已获得人类参与者的知情同意。本研究仅纳入功能性 I 至 III 级的患者,未进行全部或部分关节置换术18,19 且不适合假体。排除标准包括患有心血管疾病、癌症、慢性肾病、妊娠或其他与RA重叠的自身免疫性疾病的患者?…

Representative Results

介绍了参加 48 节动态锻炼计划的 6 名女性 RA 患者的结果。患者的平均年龄为52.7岁±13.1岁,BMI为26.8±4.6。平均病程为 15.5 ± 6.1 年,以疾病活动度评分 28 衡量的疾病活动度被归类为低活动度,平均为 1.9 ± 1。在残疾方面,健康评估问卷残疾的平均得分为0.5分±0.3分。对于没有参加锻炼计划的六名参与者,平均年龄为 55.8 ± 7,他们的 BMI 为 27.2 ± 4.8。病程为21.8±10,病害活动度与接受动态运动计划的?…

Discussion

在类风湿性关节炎中,已经描述了该病的恶性循环,这是指由炎症机制引起的关节结构变化;这些变化,加上慢性炎症状态,导致患者经历剧烈疼痛和炎症的阶段,关节结构发生变化,从而导致功能障碍,从而增加患代谢和心血管疾病的风险,以及类风湿恶病质等身体成分改变的风险22。运动已被证明可以减轻这种疾病的症状,提高生活质量,降低患其他疾病的风险2…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者感谢意大利帕多瓦大学医学与外科科学系的Piccoli教授和Pastori教授提供BIVA软件。此外,还有路易斯·略伦特博士和德拉。来自 INCMNSZ 免疫学和风湿病学系的 Andrea Hinojosa-Azaola,用于对患者进行风湿病学评估。这项工作得到了 CONACyT 的支持,CONACyT 赞助了 CVU 奖学金,777701 Mariel Lozada Mellado 在博士课程学习期间以及通过研究项目资助000000000261652。申办者在研究设计或数据的收集、分析或解释中没有任何作用,也没有在报告的撰写和提交论文发表的决定中发挥任何作用。

Materials

Alcohol 70% swabs NA NA Any brand can be used
bicycle ergometer NA NA Any brand can be used
BIVA  tolerance software 2002 NA NA Is a sofware created for academic use, can be download in http://www.renalgate.it/formule_calcolatori/bioimpedenza.htm in "LE FORMULE DEL Prof. Piccoli" section
BIVA confidence software NA NA Is a sofware created for academic use, can be download in http://www.renalgate.it/formule_calcolatori/bioimpedenza.htm in "LE FORMULE DEL Prof. Piccoli" section
Chair NA NA Any brand can be used
Chlorhexidine NA NA Any brand can be used, 0.05%
Examination table NA NA Any brand can be used
Leadwires square socket BodyStat SQ-WIRES
Long Bodystat 0525 electrodes BodyStat BS-EL4000
Plastic ball NA NA Any brand can be used, 30 cm
Pulse oximeter NA NA Any brand can be used
Quadscan 4000  equipment BodyStat BS-4000 Impedance measuring range: 20 – 1300 Ω ohms
Test Current: 620 μA
Frequency: 5, 50, 100, 200 kHz
Accuracy: Impedance 5 kHz: +/- 2 Ω
Impedance 50 kHz: +/- 2 Ω
Impedance 100 kHz: +/- 3 Ω
Impedance 200 kHz: +/- 3 Ω
Resistance 50 kHz: +/- 2 Ω
Reactance 50 kHz: +/- 1 Ω
Phase Angle 50 kHz: +/- 0.2°
Calibration: A resistor is supplied for independent verification from time to time. The impedance value should read between 496 and 503 Ω.
Resistence bands NA NA Any brand can be used, with resistence of 0.5 kg to 3.2 kg
Stationary bicycle NA NA Any brand can be used
Treadmill NA NA Any brand can be used
Wooden stick NA NA Any brand can be used, 1.5m in large and <1kg

Referências

  1. Aletaha, D., et al. Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Annals of the Rheumatic Diseases. 62 (9), 1580-1588 (2010).
  2. Gamal, R. M., Mahran, S. A., Abo El Fetoh, N., Janbi, F. Quality of life assessment in Egyptian rheumatoid arthritis patients: Relation to clinical features and disease activity. Egyptian Rheumatologist. 38 (2), 65-70 (2016).
  3. Rall, L. C., Roubenoff, R. Rheumatoid cachexia: metabolic abnormalities, mechanisms, and interventions. Rheumatology. 43 (10), 1219-1223 (2004).
  4. Summers, G. D., Deighton, C. M., Rennie, M. J., Booth, A. H. Rheumatoid cachexia: A clinical perspective. Rheumatology. 47 (8), 1124-1131 (2008).
  5. Elkan, A. C., Engvall, I. L., Cederholm, T., Hafström, I. Rheumatoid cachexia, central obesity and malnutrition in patients with low-active rheumatoid arthritis: Feasibility of anthropometry, Mini Nutritional Assessment, and body composition techniques. European Journal of Nutrition. 48 (5), 315-322 (2009).
  6. Engvall, I. L., et al. Cachexia in rheumatoid arthritis is associated with inflammatory activity, physical disability, and low bioavailable insulin-like growth factor. Scandinavian Journal of Rheumatology. 37 (5), 321-328 (2008).
  7. Jacobs, D. O. Bioelectrical Impedance Analysis: Implications for Clinical Practice. Nutrition in Clinical Practice. 12 (5), 204-210 (1997).
  8. Santillán-Díaz, C., et al. Prevalence of rheumatoid cachexia assessed by bioelectrical impedance vector analysis and its relation with physical function. Clinical Rheumatology. 37 (3), 607-614 (2018).
  9. Piccoli, A., et al. Bivariate normal values of the bioelectrical impedance vector in adult and elderly populations. The American Journal of Clinical Nutrition. 61 (2), 269-270 (1995).
  10. Espinosa-Cuevas, M. A., et al. Vectores de impedancia bioeléctrica para la composición corporal en población mexicana [Bioelectrical impedance vectors for body composition in Mexican population]. Revista de investigación clínica [Clinical research journal]. 59 (1), 15-24 (2007).
  11. Piccoli, A., Pillon, L., Dumler, F. Impedance vector distribution by sex, race, body mass index, and age in the United States: standard reference intervals as bivariate Z scores. Nutrition. 18 (2), 153-167 (2002).
  12. Maese, J., García De Yébenes, M. J., Carmona, L., Hernández-García, C. Estudio sobre el manejo de la artritis reumatoide en España (emAR II) [Study on the management of rheumatoid arthritis in Spain (emAR II)]. Características clínicas de los pacientes [Clinical characteristic of patients]. Reumatología Clinica. 8 (5), 236-242 (2012).
  13. Hurkmans, E., Van der Giesen, F. J., Vlieland, T. P. M. V., Schoones, J., Van den Ende, E. C. H. M. Dynamic exercise programs (aerobic capacity and/or muscle strength training) in patients with rheumatoid arthritis. Cochrane Database of Systematic Reviews. 4, CD006853 (2009).
  14. Baillet, A., et al. Efficacy of cardiorespiratory aerobic exercise in rheumatoid arthritis: Meta-analysis of randomized controlled trials. Arthritis Care & Research. 62 (7), 984-992 (2010).
  15. De Jong, Z., et al. Long-term follow-up of a high-intensity exercise program in patients with rheumatoid arthritis. Clinical Rheumatology. 28 (6), 663-671 (2009).
  16. García-Morales, J. M., et al. Effect of a dynamic exercise program in combination with Mediterranean diet on quality of life in women with rheumatoid arthritis. Journal of Clinical Rheumatology. 26 (2), S116-S122 (2019).
  17. Munneke, M., et al. Effect of a high-intensity weight-bearing exercise program on radiologic damage progression of the large joints in subgroups of patients with rheumatoid arthritis. Arthritis & Rheumatism. 53, 410-417 (2005).
  18. Hochberg, M., Chang, R., Dwosh, I., Lyndsey, S., Pincus, T., et al. The American College of Rheumatology 1991 Revised Criteria for the Classification of Global Functional Status in Rheumatoid Arthritis. Arthritis & Rheumatism. 35, 498-502 (1991).
  19. Nikiphorou, E., Konan, S., MacGregor, A. J., Haddad, F. S., Young, A. The surgical treatment of rheumatoid arthritis. Bone Joint Journal. 96 (10), 1287-1289 (2014).
  20. Jacqueline, B., et al. Rheumatoid Arthritis: A Brief Overview of the Treatment. Medical Principles and Practice. 27 (6), 501-507 (2019).
  21. Piccoli, A., Rossi, B., Pillon, L., Bucciante, G. A new method for monitoring body fluid variation by bioimpedance analysis: the RXc graph. Kidney International. 46 (2), 534-539 (1994).
  22. Benatti, F. B., Pedersen, B. K. Exercise as an anti-inflammatory therapy for rheumatic diseases – Myokine regulation. Nature Reviews Rheumatology. 11 (2), 86-97 (2015).
  23. Cooney, J. K., et al. Benefits of Exercise in Rheumatoid Arthritis. Journal of Aging Research. 6, 297-310 (2011).
  24. Barbosa-Silva, M. C. G., Barros, J. D. Bioelectrical impedance analysis in clinical practice: a new perspective on its use beyond body composition equations. Current Opinion. Clinical Nutrition and Metabolic Care. 8 (3), 311-317 (2005).
  25. Mulasi, U., Kuchnia, A. J., Cole, A. J., Earthman, C. P. Bioimpedance at the bedside: current applications,limitations, and opportunities. Nutrition in Clinical Practice. 30 (2), 180-193 (2015).
  26. Steihaug, O. M., Bogen, B., Kristoffersen, M., Ranhoff, A. Bones, blood and steel: How bioelectrical impedance analysis is affected by a hip fracture and surgical implants. Journal of Electrical Bioimpedance. 8, 54-59 (2017).
  27. Nwosu, A. C., et al. Bioelectrical impedance vector analysis (BIVA) is a method to compare body composition differences according to cancer stage and type. Clinical nutrition ESPEN. 30, 59-66 (2019).
  28. Martins, P. C., Gobbo, L. A., Silva, D. A. S. Bioelectrical impedance vector analysis (BIVA) in university athletes. Journal of the International Society of Sports Nutrition. 18 (7), 1-8 (2021).
  29. Norman, K., Pirlich, M., Sorensen, J., Christensen, P., Kemps, M., Schütz, T., Lochs, H., Kondrup, J. Bioimpedance vector analysis as a measure of muscle function. Clinical Nutrition. 28 (1), 78-82 (2009).
  30. Stagi, S., et al. Usability of classic and specific bioelectrical impedance vector analysis in measuring body composition of children. Clinical nutrition. 41 (3), 673-679 (2022).
  31. Garber, C. E., et al. American College of Sports Medicine. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine & Science in Sports & Exercise. 43 (7), 1334-1359 (2011).
check_url/pt/65692?article_type=t

Play Video

Citar este artigo
Lozada-Mellado, M., García-Morales, J. M., Ogata-Medel, M., Pineda-Juárez, J. A., Castillo-Martínez, L. Evaluation of Changes in Hydration and Body Cell Mass with Bioelectrical Impedance Analysis after Exercise Program for Rheumatoid Arthritis Patients. J. Vis. Exp. (197), e65692, doi:10.3791/65692 (2023).

View Video