Summary

Cryoconservation des cellules germinales primordiales et renaissance des souches de drosophile

Published: December 01, 2023
doi:

Summary

Il est hautement souhaitable de mettre au point une méthode de conservation à long terme des souches de drosophile comme solution de rechange au transfert fréquent de mouches adultes dans des flacons d’aliments frais. Ce protocole décrit la cryoconservation des cellules germinales primordiales de la drosophile et la renaissance de la souche via leur transplantation sur des embryons hôtes agamétiques.

Abstract

Les souches de drosophiles doivent être maintenues par le transfert fréquent de mouches adultes dans de nouveaux flacons. Cela comporte un risque de détérioration mutationnelle et de changements phénotypiques. Il est donc impératif de mettre au point une méthode alternative de conservation à long terme sans de tels changements. Malgré des tentatives antérieures réussies, la cryoconservation des embryons de drosophile n’est toujours pas d’une utilité pratique en raison de sa faible reproductibilité. Nous décrivons ici un protocole de cryoconservation des cellules germinales primordiales (PGC) et de reconstitution de souches par transplantation de PGC cryoconservés dans des embryons hôtes agamétiques de Drosophila melanogaster (D. melanogaster). Les PGC sont très perméables aux agents cryoprotecteurs (CPA), et les variations développementales et morphologiques entre les souches sont moins problématiques que dans la cryoconservation des embryons. Dans cette méthode, les PGC sont prélevés sur environ 30 embryons de donneurs, chargés dans une aiguille après le traitement CPA, puis cryoconservés dans de l’azote liquide. Pour produire des gamètes dérivés d’un donneur, les PGC cryoconservés dans une aiguille sont décongelés, puis déposés dans environ 15 embryons hôtes agamétiques. Une fréquence d’au moins 15 % de mouches fertiles a été atteinte avec ce protocole, et le nombre de descendants par couple fertile était toujours plus que suffisant pour faire revivre la souche originale (le nombre moyen de descendants étant de 77,2 ± 7,1), ce qui indique la capacité des PGC cryoconservés à devenir des cellules souches germinales. Le nombre moyen de mouches fertiles par aiguille était de 1,1 ± 0,2, et 9 aiguilles sur 26 ont produit deux ou plusieurs descendants fertiles. Il a été constaté que 11 aiguilles suffisent pour produire 6 descendants ou plus, dans lesquels au moins une femelle et un mâle sont probablement inclus. L’hôte agametique permet de faire revivre la souche rapidement en croisant simplement des mouches femelles et mâles nouvellement émergées. De plus, les PGC ont le potentiel d’être utilisés dans des applications de génie génétique, telles que l’édition du génome.

Introduction

Le maintien des souches de drosophile par le transfert de mouches adultes dans de nouveaux flacons de nourriture entraîne inévitablement l’accumulation de mutations et de changements épigénétiques au fil du temps. Il est impératif de mettre au point une méthode alternative pour le maintien à long terme des souches de drosophile sans de tels changements, en particulier pour les souches de référence dans lesquelles l’ensemble du génome doit être maintenu. Plusieurs tentatives réussies de cryoconservation d’embryons ou d’ovaires de drosophiles ont été décrites 1,2,3. Malheureusement, ils ne sont toujours pas d’une utilité pratique en raison de leur faible reproductibilité. En effet, les embryons à un stade précoce ont un faible taux de survie après cryoconservation en raison de leur forte teneur en vitellus, ce qui empêche la perméation et la diffusion de l’agent cryoprotecteur (CPA) 2,3. La perméabilité au CPA est également sévèrement limitée par les couches cireuses des embryons à un stade avancé. Il est difficile et prend beaucoup de temps de trouver une période spécifique à la souche au cours de laquelle les embryons ont un taux de survie élevé et une couche de cire plus fine. Récemment, Zhan et al.4 ont amélioré les méthodes de perméabilisation des embryons, de chargement de CPA et de vitrification et ont cryoconservé avec succès des embryons de plusieurs souches. Cependant, les méthodes ne sont pas faciles à appliquer car la viabilité des embryons après perméabilisation a tendance à être faible. Par conséquent, il est encore nécessaire d’améliorer et de développer des approches alternatives. Les méthodes de cryoconservation des cellules germinales primordiales (PGC) constituent une approche alternative pour le maintien à long terme des souches de drosophile.

La transplantation de PGC (également appelée cellule polaire) a été utilisée pour générer des chimères germinales, en particulier des femelles, afin d’étudier des processus tels que les effets maternels des mutations létales zygotiques et la détermination du sexe des cellules germinales 5,6,7,8,9,10,11,12 . Les PGC sont beaucoup plus petits que les embryons et sont susceptibles d’être très perméables à la plupart des cryoprotecteurs. De plus, la variation développementale et morphologique entre les souches est moins problématique, et un hôte agametique permet une restauration rapide de génomes entiers. Nous avons récemment mis au point une nouvelle méthode de cryoconservation PGC13, qui empêche les changements génétiques et épigénétiques autrement inévitables dans les souches de drosophile. Nous vous présentons ici le protocole détaillé.

Cette méthode de cryoconservation nécessite une expertise spécifique dans la manipulation et l’instrumentation des PGC. Bien qu’une approche étape par étape puisse être une solution efficace pour ceux qui ne la connaissent pas, elle peut ne pas convenir aux petits laboratoires en raison des exigences en matière d’instrumentation. Ce protocole de cryoconservation PGC peut être plus facilement adapté pour être utilisé avec différentes espèces de drosophiles et différentes espèces d’insectes que les protocoles de cryoconservation d’embryons en raison de différences de développement et morphologiques plus faibles. Les PGC peuvent également être utilisés dans des applications de génie génétique, telles que l’édition du génome 14,15,16. En résumé, cette méthode peut être utilisée dans les centres de stockage et autres laboratoires pour maintenir les souches de mouches et d’autres insectes pendant des périodes prolongées sans changements.

Protocol

1. Préparation de l’équipement Système de micromanipulateur : Assembler un système de micromanipulateur pour prélever et transplanter des cellules (figure 1A). Lames de verre de collection PGC (Figure 2A)Pour préparer la colle à l’heptane, coupez du ruban adhésif double face d’environ 30 cm de long et faites-le tremper toute la nuit dans 7 ml de solution d’heptane de qualité technique (ordinaire).</li…

Representative Results

L’efficacité de la transplantation de PGC cryoconservés a été rapportée par Asaoka et al.13 et est donnée dans le tableau 2 pour la transplantation de PGC cryoconservés pendant 1 jour ou plus dans de l’azote liquide. Le taux d’éclosion était de 168/208 embryons transplantés (80,8 %) et la viabilité de l’embryon à l’adulte était de 87/208 (41,8 %). La fréquence des mouches fertiles était de 28/87 (32,2%). Cette fréquence ne différait pas entre les PGC cry…

Discussion

Un facteur essentiel pour le succès de la cryoconservation et de la renaissance des PGC est d’utiliser de bons embryons. Les jeunes femelles (p. ex., âgées de 3 à 5 jours) doivent être utilisées pour le prélèvement d’embryons. Les embryons du donneur et de l’hôte sont évalués par inspection microscopique, et seuls ceux au stade du blastoderme (stade 5) sont utilisés12. Pour le prélèvement de PGC, nous alignons généralement environ 40 embryons de donneurs sur une période de 2…

Declarações

The authors have nothing to disclose.

Acknowledgements

Nous remercions le KYOTO Drosophila Stock Center pour les souches de mouches. Nous remercions également Mme Wanda Miyata pour l’édition en anglais du manuscrit et le Dr Jeremy Allen d’Edanz (https://jp.edanz.com/ac) pour l’édition d’une ébauche de ce manuscrit. Ce travail a été soutenu par des subventions (JP16km0210072, JP17km0210146, JP18km0210146) de l’Agence japonaise pour la recherche et le développement médicaux (AMED) à T.T.-S.-K., des subventions (JP16km0210073, JP17km0210147, JP18km0210145) d’AMED à S.K., une subvention (JP20km0210172) d’AMED à T.T.-S.-K. et S.K., une subvention d’aide à la recherche scientifique (C) (JP19K06780) de la Société japonaise pour la promotion de la science (JSPS) à T.T.-S.-K., et une subvention d’aide à la recherche scientifique dans des domaines innovants (JP18H05552) de JSPS à S.K.

Materials

Acetic acid FUJIFILM Wako Pure Chemical Corporation 017-00256 For embryo collection
Agar powder FUJIFILM Wako Pure Chemical Corporation 010-08725 For embryo collection
Calcium chloride FUJIFILM Wako Pure Chemical Corporation 038-24985 For EBR solution
Capillary Sutter Instrument B100-75-10-PT BOROSILICATE GLASS; O.D: 1.0mm, I.D: 0.75mm , length: 10cm, 225Pcs
Capillary holder Eppendorf 5196 081.005 Capillary holder 4; for micromanipulation
Chromic acid mixture FUJIFILM Wako Pure Chemical Corporation 037-05415 For needle washing
CPA solution 1x EBR containing 20% ethylene glycol and 1M sucrose
Double-sided tape 3M Scotch w-12 For glue extracting
Ephrussi–Beadle Ringer solution (EBR) 130 mM NaCl, 5 mM KCl, 2 mM CaCl2, and 10 mM Hepes at pH 6.9
Ethanol (99.5) FUJIFILM Wako Pure Chemical Corporation 057-00451 For embryo collection
Ethylene glycol FUJIFILM Wako Pure Chemical Corporation 054-00983 For CPA solution
Falcon 50 mm x 9 mm bacteriological petri dish Corning Inc. 351006 For embryo collection
Forceps Vigor Type5 Titan For embryo handling
Grape juice Asahi Soft Drinks Co., LTD. Welch's Grape 100 For embryo collection
Grape juice agar plate 50% grape juice, 2% agar, 1% ethanol, 1% acetic acid
Heptane FUJIFILM Wako Pure Chemical Corporation 084-08105 For glue extracting
Humidifier APIX INTERNATIONAL CO., LTD. FSWD2201-WH For embryo preparation
Inverted microscope Leica Microsystems GmbH Leica DM IL LED For micromanipulation
Luer-lock glass syringe Tokyo Garasu Kikai Co., Ltd. 0550 14 71 08 Coat a plunger with silicon oil (FL-100-450CS);for micromanipulation
Mechanical micromanipulator Leica Microsystems GmbH For micromanipulation
Micro slide glass Matsunami Glass Ind., Ltd. S-2441 For embryo aligning
Microgrinder NARISHIGE Group Custom order EG-401-S combined EG-401 and MF2 (with ocular lens MF2-LE15 ); for needle preparation
Microscope camera Leica Microsystems GmbH Leica MC170 HD For micromanipulation
Needle holder Merck KGaA Eppendorf TransferTip (ES) For cryopreservation
Potassium chloride Nacalai Tesque, Inc. 28514-75 For EBR solution
Puller NARISHIGE Group PN-31 For needle preparation; the heater level is set to 85.0-98.4, the magnet main level to 57.8, and the magnet sub level to 45.0.
PVC adhesive tape for electric insulation Nitto Denko Corporation  J2515 For embryo-pool frame
Silicon oil Shin-Etsu Chemical, Co, Ltd. FL-100-450CS For embryo handling
Sodium chloride Nacalai Tesque, Inc. 31320-05 For EBR solution
Sodium hypochlorite solution FUJIFILM Wako Pure Chemical Corporation 197-02206 Undiluted and freshly prepared; for embryo breaching
Sucrose Nacalai Tesque, Inc. 30404-45 For CPA solution

Referências

  1. Brüschweiler, W., Gehring, W. A method for freezing living ovaries of Drosophila melanogaster larvae and its application to the storage of mutant stocks. Experientia. 29, 134-135 (1973).
  2. Steponkus, P. L., et al. Cryopreservation of Drosophila melanogaster embryos. Nature. 345, 170-172 (1990).
  3. Mazur, P., Cole, K. W., Hall, J. W., Schreuders, P. D., Mahowald, A. P. Cryobiological preservation of Drosophila embryos. Science. 258 (5090), 1932-1935 (1992).
  4. Zhan, L., Li, M. G., Hays, T., Bischof, J. Cryopreservation method for Drosophila melanogaster embryos. Nat Comm. 12, 2412 (2021).
  5. Van Deusen, E. B. Sex determination in germ line chimeras of Drosophila melanogaster. Development. 37 (1), 173-185 (1977).
  6. Breen, T. R., Duncan, I. M. Maternal expression of genes that regulate the bithorax complex of Drosophila melanogaster. Dev Biol. 118, 442-456 (1986).
  7. Schupbach, T., Wieschaus, E. Germline autonomy of maternal-effect mutations altering the embryonic body pattern of Drosophila. Dev Biol. 113, 443-448 (1986).
  8. Irish, V., Lehmann, R., Akam, M. The Drosophila posterior-group gene nanos functions by repressing hunchback activity. Nature. 338, 646-648 (1989).
  9. Hülskamp, M., Schröder, C., Pfeifle, C., Jäckle, H., Tautz, D. Posterior segmentation of the Drosophila embryo in the absence of a maternal posterior organizer gene. Nature. 338, 629-632 (1989).
  10. Steinmann-Zwicky, M., Schmid, H., Nöthiger, R. Cell-autonomous and inductive signals can determine the sex of the germ line of Drosophila by regulating the gene Sxl. Cell. 57 (1), 157-166 (1989).
  11. Stein, D., Roth, S., Vogelsang, E., Nüsslein-Volhard, C. The polarity of the dorsoventral axis in the drosophila embryo is defined by an extracellular signal. Cell. 65 (5), 725-735 (1991).
  12. Kobayashi, S., Yamada, M., Asaoka, M., Kitamura, T. Essential role of the posterior morphogen nanos for germline development in Drosophila. Nature. 380, 708-711 (1996).
  13. Asaoka, M., et al. Offspring production from cryopreserved primordial germ cells in Drosophila. Comm Biol. 4 (1), 1159 (2021).
  14. Blitz, I. L., Fish, M. B., Cho, K. W. Y. Leapfrogging: primordial germ cell transplantation permits recovery of CRISPR/Cas9-induced mutations in essential genes. Development. 143 (15), 2868-2875 (2016).
  15. Koslová, A., et al. Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus. Proc Natl Acad Sci U S A. 117 (4), 2108-2112 (2020).
  16. Zhang, F. Efficient generation of zebrafish maternal-zygotic mutants through transplantation of ectopically induced and Cas9/gRNA targeted primordial germ cells. J Genet Genom. 47 (1), 37-47 (2020).
  17. Campos-Ortega, J. A., Hartenstein, V. Stages of Drosophila Embryogenesis. The Embryonic Development of Drosophila. , (1997).
  18. Manning, A. A sperm factor affecting the receptivity of Drosophila melanogaster females. Nature. 194, 252-253 (1962).
  19. Kubli, E. Sex-peptides: seminal peptides of the Drosophila male. Cell Mol Life Sci. 60, 1689-1704 (2003).
  20. Lehmann, R., Nüsslein-Volhard, C. Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in drosophila. Cell. 47 (1), 141-152 (1986).
  21. Kiger, A. A., Gigliotti, S., Fuller, M. T. Developmental genetics of the essential Drosophila Nucleoporin nup154: allelic differences due to an outward-directed promoter in the P-element 3′ end. Genética. 153 (2), 799-812 (1999).
  22. Rienzi, L. F., et al. Perspectives in gamete and embryo cryopreservation. Semin Reprod Med. 36 (5), 253-264 (2018).
check_url/pt/65985?article_type=t

Play Video

Citar este artigo
Nishimura, K., Asaoka, M., Sakamaki, Y., Fukumoto, T., Tanaka, D., Kobayashi, S., Takano-Shimizu-Kouno, T. Primordial Germ Cell Cryopreservation and Revival of Drosophila Strains. J. Vis. Exp. (202), e65985, doi:10.3791/65985 (2023).

View Video