Summary

Mesure quantitative de la structure et de la fonction pulmonaires obtenue à partir de la spectroscopie de xénon hyperpolarisé

Published: November 10, 2023
doi:

Summary

Le manuscrit présente un protocole détaillé pour l’utilisation de la récupération de la saturation par décalage chimique (CSSR) hyperpolarisé au xénon-129 pour suivre les échanges gazeux pulmonaires, évaluer l’épaisseur apparente de la paroi septale alvéolaire et mesurer le rapport surface/volume. La méthode a le potentiel de diagnostiquer et de surveiller les maladies pulmonaires.

Abstract

L’imagerie par résonance magnétique (IRM) au xénon-129 hyperpolarisé (HXe) fournit des outils permettant d’obtenir des cartes bidimensionnelles ou tridimensionnelles des modèles de ventilation pulmonaire, de la diffusion des gaz, de l’absorption de xénon par le parenchyme pulmonaire et d’autres paramètres de la fonction pulmonaire. Cependant, en échangeant la résolution spatiale contre la résolution temporelle, il permet également de suivre les échanges gazeux de xénon pulmonaire sur une échelle de temps ms. Cet article décrit l’une de ces techniques, la spectroscopie IRM CSSR (chemical shift saturation recovery). Il illustre comment il peut être utilisé pour évaluer le volume sanguin capillaire, l’épaisseur de la paroi septale et le rapport surface/volume dans les alvéoles. L’angle de retournement des impulsions de radiofréquence (RF) appliquées a été soigneusement calibré. Des protocoles d’apnée unidose et de respiration libre multidose ont été utilisés pour administrer le gaz au sujet. Une fois que le gaz xénon inhalé a atteint les alvéoles, une série d’impulsions RF à 90° a été appliquée pour assurer une saturation maximale de l’aimantation au xénon accumulée dans le parenchyme pulmonaire. Après un temps de retard variable, des spectres ont été acquis pour quantifier la repousse du signal Xénon due aux échanges gazeux entre le volume de gaz alvéolaire et les compartiments tissulaires du poumon. Ces spectres ont ensuite été analysés en ajustant des fonctions pseudo-Voigt complexes aux trois pics dominants. Enfin, les amplitudes de crête dépendantes du temps de retard ont été ajustées à un modèle analytique unidimensionnel d’échange gazeux afin d’extraire les paramètres physiologiques.

Introduction

L’imagerie par résonance magnétique (IRM) au xénon-129 hyperpolarisé (HXe)1 est une technique qui offre des informations uniques sur la structure et la fonction des poumons et les processus d’échange gazeux. En amplifiant considérablement l’aimantation du gaz xénon par pompage optique à échange de spin, l’IRM HXe permet d’améliorer d’un ordre de grandeur le rapport signal/bruit par rapport à l’IRM au xénonpolarisé thermiquement 2,3,4,5,6. Cette hyperpolarisation permet de visualiser et de quantifier directement l’absorption de gaz xénon dans les tissus pulmonaires et le sang, ce qui serait autrement indétectable avec l’IRM7 conventionnelle à polarisation thermique.

La spectroscopie IRMCSSR 8,9,10,11,12,13 s’est avérée être l’une des techniques d’IRM HXe les plus précieuses. La CSSR consiste à saturer sélectivement l’aimantation du xénon dissous dans le tissu pulmonaire et le sang à l’aide d’impulsions de radiofréquence (RF) spécifiques à la fréquence. La récupération ultérieure du signal en phase dissoute (DP) lorsqu’il échange avec du gaz xénon hyperpolarisé frais dans les espaces aériens sur une échelle de temps de ms offre des informations fonctionnelles importantes sur le parenchyme pulmonaire.

Depuis son développement au début des années 2000, les techniques sous-jacentes à la spectroscopie CSSR ont été progressivement affinées 14,15,16,17,18,19,20,21,22,23. De plus, les progrès réalisés dans la modélisation des courbes d’absorption du xénon ont permis d’extraire des paramètres physiologiques spécifiques, tels que l’épaisseur de la paroi alvéolaire et les temps de transit pulmonaire 10,24,25,26. Des études ont montré la sensibilité du CSSR à des changements subtils de la microstructure pulmonaire et de l’efficacité des échanges gazeux sous la forme d’anomalies pulmonaires observées chez les fumeurs cliniquement sains27, ainsi que dans une gamme de maladies pulmonaires, y compris la bronchopneumopathie chronique obstructive (MPOC)18,27,28, la fibrose 29 et les lésions pulmonaires radio-induites30,31. Il a également été démontré que la spectroscopie CSSR est sensible à la détection des oscillations du signal DP correspondant au débit sanguin pulsatile au cours du cycle cardiaque32.

Bien que des progrès significatifs aient été réalisés, la mise en œuvre de la spectroscopie CSSR sur les systèmes d’IRM clinique reste des défis pratiques. Les durées d’analyse nécessitant des apnées à dose unique approchant les 10 s peuvent être trop longues pour les sujets pédiatriques33,34 ou les patients atteints d’une maladie pulmonaire grave35,36. De plus, la technique est susceptible d’être biaisée si les paramètres d’acquisition tels que l’ordre des temps de retard de saturation ou l’efficacité de la saturation en phase dissoute ne sont pas correctement optimisés21. Pour remédier à ces limites et rendre le CSSR plus accessible à l’ensemble de la communauté de recherche, des protocoles clairs et étape par étape pour les acquisitions conventionnelles en apnée et en respiration libre, actuellement en cours d’élaboration, sont nécessaires.

L’objectif de cet article est de présenter une méthodologie détaillée pour réaliser une spectroscopie MR CSSR optimisée à l’aide du gaz HXe. Le protocole couvrira la polarisation et l’administration du gaz xénon, l’étalonnage des impulsions RF, la sélection des paramètres de séquence, la préparation du sujet, l’acquisition des données et les étapes clés de l’analyse des données. Des exemples de résultats expérimentaux seront fournis. Nous espérons que ce guide complet servira de base à la mise en œuvre des CSSR dans tous les sites et aidera à réaliser le plein potentiel de cette technique pour quantifier les changements microstructurels pulmonaires dans une gamme de maladies pulmonaires.

Protocol

REMARQUE : Bien que la technique de spectroscopie RM hyperpolarisée Xenon-129 CSSR décrite ici soit couramment utilisée pour l’imagerie animale et humaine, le protocole ci-dessous ne fait référence qu’aux études humaines. Tous les protocoles d’imagerie respectaient les limites de débit d’absorption spécifique (DAS) de la FDA (4 W/kg) et ont été approuvés par l’Institutional Review Board de l’Université de Pennsylvanie. Un consentement éclairé a été obtenu de chaque sujet. <p class="jove_ti…

Representative Results

La figure 2 illustre un spectre typique du xénon observé dans les poumons humains pendant une apnée, après l’inhalation de 500 mL de dose de xénon. Le spectre présente deux régions distinctes, la résonance GP autour de 0 ppm, et la région DP, qui se compose du pic membranaire à environ 197 ppm et du pic des globules rouges à environ 217 ppm. Les amplitudes de crête relatives dépendent d’un certain nombre de facteurs, notamment la forme, la durée et la fréquence centrale de…

Discussion

La spectroscopie IRM HXe CSSR est une technique puissante pour évaluer plusieurs paramètres de la fonction pulmonaire qui seraient difficiles, voire impossibles, à quantifier in vivo en utilisant toute autre modalité de diagnostic existante24. Néanmoins, l’acquisition et l’analyse ultérieure des données sont basées sur certaines hypothèses sur les conditions physiologiques et les paramètres techniques qui ne sont jamais entièrement réalisables chez des sujets vivants. Ces …

Declarações

The authors have nothing to disclose.

Acknowledgements

Ce travail a été soutenu par des subventions des NIH R01HL159898 et R01HL142258.

Materials

Bi-directional Pneumotach  B&B Medical AccutachTM
Chest Vest Coil Clinical MR Solutions Adult Size
Face Mask Hans Rudolph 7450
Matlab Mathworks Release 2018a Optimization Toolbox required
Physiological Monitoring System  BIOPAC Systems Inc
Tedlar Bag Jensen Inert Products 250-mL and 500-mL; specialised PVF bag
Xenon Polarizer Xemed LLC X-box E10 
Whole-body MRI Scanner Siemens 1.5 T Avanto

Referências

  1. Albert, M. S., et al. Biological magnetic resonance imaging using laser-polarized 129Xe. Nature. 370 (6486), 199-201 (1994).
  2. Happer, W. Optical Pumping. Rev Mod Phys. 44 (2), 169-250 (1972).
  3. Appelt, S., et al. Theory of spin-exchange optical pumping of He-3 and Xe-129. Phys Rev A. 58 (2), 1412-1439 (1998).
  4. Hersman, F. W., et al. Large production system for hyperpolarized 129Xe for human lung imaging studies. Acad Radiol. 15 (6), 683-692 (2008).
  5. Parnell, S. R., Deppe, M. H., Parra-Robles, J., Wild, J. M. Enhancement of Xe-129 polarization by off-resonant spin exchange optical pumping. J Appl Phys. 108 (6), 064908 (2010).
  6. Norquay, G., Collier, G. J., Rao, M., Stewart, N. J., Wild, J. M. ^{129}Xe-Rb spin-exchange optical pumping with high photon efficiency. Phys Rev Lett. 121 (15), 153201 (2018).
  7. Mugler, J. P., et al. MR imaging and spectroscopy using hyperpolarized 129Xe gas: preliminary human results. Magn Reson Med. 37 (6), 809-815 (1997).
  8. Ruppert, K., Brookeman, J. R., Hagspiel, K. D., Driehuys, B., Mugler, J. P. NMR of hyperpolarized (129)Xe in the canine chest: spectral dynamics during a breath-hold. NMR Biomed. 13 (4), 220-228 (2000).
  9. Butler, J. P., et al. Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized Xenon interphase exchange nuclear magnetic resonance. J Phys Condens Matter. 14 (13), L297-L304 (2002).
  10. Mansson, S., Wolber, J., Driehuys, B., Wollmer, P., Golman, K. Characterization of diffusing capacity and perfusion of the rat lung in a lipopolysaccaride disease model using hyperpolarized 129Xe. Magn Reson Med. 50 (6), 1170-1179 (2003).
  11. Abdeen, N., et al. Measurement of Xenon diffusing capacity in the rat lung by hyperpolarized (129)Xe MRI and dynamic spectroscopy in a single breath-hold. Magn Reson Med. 56 (2), 255-264 (2006).
  12. Driehuys, B., et al. Imaging alveolar-capillary gas transfer using hyperpolarized 129Xe MRI. Proc Natl Acad Sci U S A. 103 (48), 18278-18283 (2006).
  13. Patz, S., et al. Human pulmonary imaging and spectroscopy with hyperpolarized 129Xe at 0.2T. Acad Radiol. 15 (6), 713-727 (2008).
  14. Qing, K., et al. Assessment of lung function in asthma and COPD using hyperpolarized 129Xe chemical shift saturation recovery spectroscopy and dissolved-phase MRI. NMR Biomed. 27 (12), 1490-1501 (2014).
  15. Stewart, N. J., et al. Reproducibility of quantitative indices of lung function and microstructure from 129 Xe chemical shift saturation recovery (CSSR) MR spectroscopy. Magn Reson Med. 77 (6), 2107-2113 (2017).
  16. Zhong, J., et al. Simultaneous assessment of both lung morphometry and gas exchange function within a single breath-hold by hyperpolarized (129) Xe MRI. NMR Biomed. 30 (8), (2017).
  17. Kern, A. L., et al. Regional investigation of lung function and microstructure parameters by localized (129) Xe chemical shift saturation recovery and dissolved-phase imaging: A reproducibility study. Magn Reson Med. 81 (1), 13-24 (2018).
  18. Kern, A. L., et al. Mapping of regional lung microstructural parameters using hyperpolarized (129) Xe dissolved-phase MRI in healthy volunteers and patients with chronic obstructive pulmonary disease. Magn Reson Med. 81 (4), 2360-2373 (2018).
  19. Xie, J., et al. Single breath-hold measurement of pulmonary gas exchange and diffusion in humans with hyperpolarized (129) Xe MR. NMR Biomed. 32 (5), e4068 (2019).
  20. Zanette, B., Santyr, G. Accelerated interleaved spiral-IDEAL imaging of hyperpolarized (129) Xe for parametric gas exchange mapping in humans. Magn Reson Med. 82 (3), 1113-1119 (2019).
  21. Ruppert, K., et al. Investigating biases in the measurement of apparent alveolar septal wall thickness with hyperpolarized 129Xe MRI. Magn Reson Med. 84 (6), 3027-3039 (2020).
  22. Zhang, M., et al. Quantitative evaluation of lung injury caused by PM(2.5) using hyperpolarized gas magnetic resonance. Magn Reson Med. 84 (2), 569-578 (2020).
  23. Friedlander, Y., et al. Hyperpolarized (129) Xe MRI of the rat brain with chemical shift saturation recovery and spiral-IDEAL readout. Magn Reson Med. 87 (4), 1971-1979 (2022).
  24. Patz, S., et al. Diffusion of hyperpolarized (129)Xe in the lung: a simplified model of (129)Xe septal uptake and experimental results. New J Phys. 13, 015009 (2011).
  25. Chang, Y. V. MOXE: a model of gas exchange for hyperpolarized 129Xe magnetic resonance of the lung. Magn Reson Med. 69 (3), 884-890 (2013).
  26. Stewart, N. J., Parra-Robles, J., Wild, J. M. Finite element modeling of (129)Xe diffusive gas exchange NMR in the human alveoli. J Magn Reson. 271, 21-33 (2016).
  27. Ruppert, K., Qing, K., Patrie, J. T., Altes, T. A., Mugler, J. P. Using hyperpolarized Xenon-129 MRI to quantify early-stage lung disease in smokers. Acad Radiol. 26 (3), 355-366 (2019).
  28. Kern, A. L., et al. Investigating short-time diffusion of hyperpolarized (129) Xe in lung air spaces and tissue: A feasibility study in chronic obstructive pulmonary disease patients. Magn Reson Med. 84 (4), 2133-2146 (2020).
  29. Stewart, N. J., et al. Experimental validation of the hyperpolarized (129) Xe chemical shift saturation recovery technique in healthy volunteers and subjects with interstitial lung disease. Magn Reson Med. 74 (1), 196-207 (2015).
  30. Fox, M. S., et al. Detection of radiation induced lung injury in rats using dynamic hyperpolarized (129)Xe magnetic resonance spectroscopy. Med Phys. 41 (7), 072302 (2014).
  31. Li, H., et al. Quantitative evaluation of radiation-induced lung injury with hyperpolarized Xenon magnetic resonance. Magn Reson Med. 76 (2), 408-416 (2016).
  32. Ruppert, K., et al. Detecting pulmonary capillary blood pulsations using hyperpolarized Xenon-129 chemical shift saturation recovery (CSSR) MR spectroscopy. Magn Reson Med. 75 (4), 1771-1780 (2016).
  33. Walkup, L. L., et al. Feasibility, tolerability and safety of pediatric hyperpolarized 129Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis. Pediatr Radiol. 46 (12), 1651-1662 (2016).
  34. Willmering, M. M., et al. Pediatric (129) Xe gas-transfer MRI-feasibility and applicability. J Magn Reson Imaging. 56 (4), 1207-1219 (2022).
  35. Amzajerdian, F., et al. Simultaneous quantification of hyperpolarized Xenon-129 ventilation and gas exchange with multi-breath Xenon-polarization transfer contrast (XTC) MRI. Magn Reson Med. 90 (6), 2334-2347 (2023).
  36. Niedbalski, P. J., et al. Utilizing flip angle/TR equivalence to reduce breath hold duration in hyperpolarized (129) Xe 1-point Dixon gas exchange imaging. Magn Reson Med. 87 (3), 1490-1499 (2022).
  37. Chang, Y. V. Toward a quantitative understanding of gas exchange in the lung. arXiv. , (2010).
  38. Chang, Y. V., et al. Quantification of human lung structure and physiology using hyperpolarized 129Xe. Magn Reson Med. 71 (1), 339-344 (2014).
  39. Collier, G. J., et al. Observation of cardiogenic flow oscillations in healthy subjects with hyperpolarized 3He MRI. J Appl Physiol. 119 (9), 1007-1014 (2015).
  40. Niedbalski, P. J., et al. Protocols for multi-site trials using hyperpolarized (129) Xe MRI for imaging of ventilation, alveolar-airspace size, and gas exchange: A position paper from the (129) Xe MRI clinical trials consortium. Magn Reson Med. 86 (6), 2966-2986 (2021).

Play Video

Citar este artigo
Ruppert, K., Loza, L., Amzajerdian, F., Hamedani, H., Baron, R., Kadlecek, S., Rizi, R. Quantitative Measure of Lung Structure and Function Obtained from Hyperpolarized Xenon Spectroscopy. J. Vis. Exp. (201), e66038, doi:10.3791/66038 (2023).

View Video