Summary

Antagonistic Effect of Jiawei Shengjiang San on a Rat Model of Diabetic Nephropathy: Related to EGFR/MAPK3/1 Signaling Pathway

Published: May 10, 2024
doi:

Summary

Here, we present a protocol describing network pharmacology and molecular docking techniques to explore the mechanism of action of Jiawei Shengjiang San (JWSJS) in treating diabetic nephropathy.

Abstract

We aimed to delve into the mechanisms underpinning Jiawei Shengjiang San’s (JWSJS) action in treating diabetic nephropathy and deploying network pharmacology. Employing network pharmacology and molecular docking techniques, we predicted the active components and targets of JWSJS and constructed a meticulous “drug-component-target” network. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were utilized to discern the therapeutic pathways and targets of JWSJS. Autodock Vina 1.2.0 was deployed for molecular docking verification, and a 100-ns molecular dynamics simulation was conducted to affirm the docking results, followed by in vivo animal verification. The findings revealed that JWSJS shared 227 intersecting targets with diabetic nephropathy, constructing a protein-protein interaction network topology. KEGG enrichment analysis denoted that JWSJS mitigates diabetic nephropathy by modulating lipids and atherosclerosis, the PI3K-Akt signaling pathway, apoptosis, and the HIF-1 signaling pathway, with mitogen-activated protein kinase 1 (MAPK1), MAPK3, epidermal growth factor receptor (EGFR), and serine/threonine-protein kinase 1 (AKT1) identified as collective targets of multiple pathways. Molecular docking asserted that the core components of JWSJS (quercetin, palmitoleic acid, and luteolin) could stabilize conformation with three pivotal targets (MAPK1, MAPK3, and EGFR) through hydrogen bonding. In vivo examinations indicated notable augmentation in body weight and reductions in glycated serum protein (GSP), low-density lipoprotein cholesterol (LDL-C), uridine triphosphate (UTP), and fasting blood glucose (FBG) levels due to JWSJS. Electron microscopy coupled with hematoxylin and eosin (HE) and Periodic acid-Schiff (PAS) staining highlighted the potential of each treatment group in alleviating kidney damage to diverse extents, exhibiting varied declines in p-EGFR, p-MAPK3/1, and BAX, and increments in BCL-2 expression in the kidney tissues of the treated rats. Conclusively, these insights suggest that the protective efficacy of JWSJS on diabetic nephropathy might be associated with suppressing the activation of the EGFR/MAPK3/1 signaling pathway and alleviating renal cell apoptosis.

Introduction

Diabetes mellitus (DM) is a chronic disease that affects multiple systems and can cause various complications due to continuous hyperglycemia, such as diabetic nephropathy (DN), retinopathy, and neuropathy1. DN is a serious complication of DM, accounting for about 30%-50% of end-stage renal disease (ESRD)2. Its clinical manifestation is microalbuminuria, which can progress to ESRD characterized by increased glomerular volume, mesangial stromal hyperplasia, and thickened glomerular basement membrane3. The pathogenesis of DN is complex and has not been fully elucidated. Clinical methods such as lowering blood glucose, regulating blood pressure, and reducing proteinuria are mostly used to delay its progress, but the effect is general.

Currently, no specific drug has been found to treat DN4. For centuries, however, Chinese herbal medicines have been widely used in treating DM and its complications5 and have improved patients’ clinical symptoms and delayed disease progression. Due to the advantages of multi-component, multi-target, and multi-pathway effects, Chinese herbal medicines are expected to be an innovative drug source for the treatment of DN6.

“Shengjiang san” originated from the “Wanbing Huichun” by the Ming Dynasty medical doctor Gong Tingxian. The book “Neifu Xianfang” describes the use of Bombyx Batryticatus, Cicadae Periostracum, Curcumaelongae Rhizoma, and Radix Rhei et Rhizome. Based on this, after adding Hedysarum Multijugum Maxim, Epimrdii Herba, and Smilacis Glabrae Rhixoma, it exerts the function of shengjiang san of increasing lucidity, decreasing turbidity, releasing stagnant “heat,” and harmonizing “qi” and the blood7,8. It also increases the effect of strengthening the spleen and tonifying the kidneys. Its efficacy is consistent with the pathogenesis of DN’s “qi” to rise and fall out of order due to deficiency of “vital energy,” excessive dryness and “heat,” and stagnation of “heat” caused by a triple energizer7,8.

Previous clinical studies have shown Chinese herbal medicines have been used to treat DM and its complications, and jiawei shengjiang san (JWSJS) has been shown to regulate blood glucose and lipids, reduce proteinuria, and significantly improve the clinical efficacy of patients with early DN7. The ability of JWSJS to reduce urinary protein and blood glucose levels in DN rats has been confirmed by previous studies. This probably happens by inhibiting the TXNIP/NLRP3 and RIP1/RIP3/MLKL signaling pathways, reducing podocyte pyroptosis, and preventing necrotic apoptosis in renal tissues of DN rats, thus achieving renal protection9. JWSJS can upregulate nephrin and podocin protein expression and reduce podocyte injury in DN rats, thus suggesting that JWSJS has an inhibitory effect on podocyte injury. JWSJS has a certain anti-DN effect with good safety profiles, but there is little research on it, and this work mostly focuses on pyroptosis and necrotic apoptosis. The literature is not sufficiently deep or systematic10. Our previous findings have confirmed that JWSJS can reduce proteinuria and alleviate kidney damage in DN rats7. However, there are only a few studies on the mechanism of JWSJS for DN treatment, and these lack depth and systematization. Thus, this study aims to analyze the molecular substances and mechanisms of action of JWSJS for DN treatment using network pharmacology and provide a solid foundation for future research.

Network pharmacology is an emerging method to study the mechanism of drug action, including cheminformatics, network biology, bioinformatics, and pharmacology11,12. Network pharmacology research design is quite similar to the holistic concept of traditional Chinese medicine13,14, and it is an important method to study the mechanism of Chinese herbal medicines. Molecular docking can study interactions between molecules and predict their binding patterns and affinity. Molecular docking has emerged as a critical technique in the field of computer-aided drug research15. Therefore, this study constructed a JWSJS-DN-target interaction network through network pharmacology and molecular docking methods that offers a reliable and theoretical basis for further exploration of DN treatment with JWSJS.

Protocol

All animals were maintained and used in accordance with the US National Research Council Guide for the Care and Use of Laboratory Animals, 8th Edition, and were reported as recommended in the ARRIVE guidelines16,17. The study was conducted in accordance with the China National Research Council Guide for the Care and Use of Laboratory Animals and was approved by the Animal Ethics Committee of Hebei University of Chinese Medicine (DWLL2019030). <p cl…

Representative Results

Following the protocol, 90 active ingredients of JWSJS were finally obtained from the analysis after screening and deduplication according to the set standards of OB and DL. These included 20 kinds of Hedysarum Multijugum Maxim, 23 kinds of Epimrdii Herba, 15 kinds of Smilacis Glabrae Rhixoma, 16 kinds of Radix Rhei et Rhizome, four kinds of Curcumaelongae Rhizoma, 15 kinds of Cicadae Periostracum, and six kinds of Bombyx Batryticatus components. Because ther…

Discussion

Our study employed a combination of network pharmacology, molecular docking, and in vivo animal models. A critical step was the establishment of the "drug-component-target" network, which was crucial for identifying the potential mechanisms of JWSJS in treating DN, focusing particularly on its interaction with the EGFR/MAPK3/1 signaling pathway.

During this study, we made several modifications, particularly in the molecular docking process, to enhance the accuracy of our predi…

Declarações

The authors have nothing to disclose.

Acknowledgements

This study was supported by the general project of the Natural Science Foundation of Hebei Province, China (No. H2019423037).

Materials

2×SYBR Green qPCR Master Mix  Servicebio, Wuhan, China G3320-05
24-h urine protein quantification (UTP) Nanjing Jiancheng Institute of Biological Engineering N/A
3,3'-Diaminobenzidine Shanghai Huzheng Biotech, China 91-95-2
Automatic biochemical analysis instrument Hitachi, Japan 7170A
Anhydrous Ethanol Biosharp, Tianjin, China N/A
BAX Primary antibodies  Affinity, USA AF0120 Rat
BCL-2 Primary antibodies  Affinity, USA AF6139 Rat
BX53 microscope Olympus, Japan BX53
Chloroform Substitute ECOTOP, Guangzhou, China ES-8522
Desmond software  New York, NY, USA Release 2019-1
Digital Constant Temperature Water Bath Changzhou Jintan Liangyou Instrument, China DK-8D
EGFR Primary antibodies  Affinity, USA AF6043 Rat
Embed-812 RESIN Shell Chemical, USA 14900
Fasting blood glucose (FBG) Nanjing Jiancheng Institute of Biological Engineering N/A
FC-type full-wavelength enzyme label analyser Multiskan; Thermo, USA N/A
GAPDH  Primary antibodies  Affinity, USA AF7021 Rat
Glycated serum protein (GSP) Nanjing Jiancheng Institute of Biological Engineering N/A
Transmission electron microscope Hitachi, Japan H-7650
Haematoxylin/eosin (HE) staining solution Servicebio, USA G1003
Image-Pro Plus MEDIA CYBERNETICS, USA N/A
Real-Time PCR Amplification Instrument Applied Biosystems, USA iQ5 
Irbesartan tablets Hangzhou Sanofi Pharmaceuticals N/A
Isopropanol Biosharp, Tianjin, China N/A
 JWSJS granules Guangdong Yifang Pharmaceutical N/A
Kodak Image Station 2000 MM imaging system Kodak, USA IS2000
Low-density cholesterol (LDL-C) Nanjing Jiancheng Institute of Biological Engineering N/A
MAPK3/1Primary antibodies  Affinity, USA AF0155 Rat
Medical Centrifuge Hunan Xiangyi Laboratory Instrument Development, China  TGL-16K
Mini trans-blot transfer system Bio-Rad, USA N/A
Mini-PROTEAN electrophoresis system Bio-Rad, USA N/A
NanoVue Plus Spectrophotometer Healthcare Bio-Sciences AB, Sweden 111765
p-EGFR Primary antibodies  Affinity, USA AF3044 Rat
Periodic acid-Schiff (PAS) staining solution Servicebio, USA G1008
p-MAPK3/1 Primary antibodies  Affinity, USA AF1015 Rat
Secondary antibodies  Santa Cruz, USA sc-2357 Rabbit
Streptozotocin Sigma, USA S0130
SureScript First-Strand cDNA Synthesis Kit GeneCopeia, USA QP056T
TriQuick Reagent Solarbio, Beijing, China R1100
Ultra-Clean Workbench Suzhou Purification Equipment, China SW-CJ-1F 

Referências

  1. Viigimaa, M., Sachinidis, A., Toumpourleka, M., Koutsampasopoulos, K., Alliksoo, S., Titma, T. Macrovascular complications of Type 2 diabetes mellitus. Curr Vasc Pharmacol. 18 (2), 110-116 (2020).
  2. Umanath, K., Lewis, J. B. Update on diabetic nephropathy: Core Curriculum 2018. Am J Kidney Dis. 71 (6), 884-895 (2018).
  3. Han, W., et al. Huangkui capsule alleviates renal tubular epithelial-mesenchymal transition in diabetic nephropathy via inhibiting NLRP3 inflammasome activation and TLR4/NF-kappaB signaling. Phytomedicine. 57, 203-214 (2019).
  4. Giralt-Lopez, A., et al. Revisiting experimental models of diabetic nephropathy. Int J Mol Sci. 21 (10), 3587 (2020).
  5. Lu, Z., Zhong, Y., Liu, W., Xiang, L., Deng, Y. the efficacy and mechanism of Chinese herbal medicine on diabetic kidney disease. J Diabetes Res. 2019, 2697672 (2019).
  6. Niu, H., et al. The therapeutic mechanism of PuRenDan for the treatment of diabetic nephropathy: Network pharmacology and experimental verification. J Ethnopharmacol. 293, 115283 (2022).
  7. Gao, F., Wang, Z., Yang, B., Tan, J. Mechanism of Jiawei Shengjiang San in the treatment of membranous nephropathy based on network pharmacology. Pharmacology and Clinics of Chinese Materia Medica. 37 (5), 132-138 (2021).
  8. Li, W., Xie, M. Analysis of composing and application rule in the evolution of Shengjiang San. Journal of Beijing University of Traditional Chinese Medicine. 44 (10), 894-898 (2021).
  9. Zhang, Y., et al. Mechanism of Jiawei Shengjiang powder in inhibiting renal inflammation and fibrosis in diabetic rats based on TLR4/NF-kappaB and Raf/MEK pathways. Pharmacology and Clinics of Chinese Materia Medica. 38 (5), 20-27 (2022).
  10. Zhao, L., et al. Pharmacodynamic mechanism of Yishen Tongluo Formula in treatment of diabetic kidney disease based on network pharmacology and verification of key regulation pathway. Journal of Beijing University of Traditional Chinese Medicine. 45 (8), 824-834 (2022).
  11. Zhang, J., Liang, R., Wang, L., Yang, B. Effects and mechanisms of Danshen-Shanzha herb-pair for atherosclerosis treatment using network pharmacology and experimental pharmacology. J Ethnopharmacol. 229, 104-114 (2019).
  12. Chen, L., et al. Network pharmacology-based strategy for predicting active ingredients and potential targets of Yangxinshi tablet for treating heart failure. J Ethnopharmacol. 219, 359-368 (2018).
  13. Zhu, M., Qin, Y. C., Gao, C. Q., Yan, H. C., Wang, X. Q. l-Glutamate drives porcine intestinal epithelial renewal by increasing stem cell activity via upregulation of the EGFR-ERK-mTORC1 pathway. Food Funct. 11 (3), 2714-2724 (2020).
  14. Ding, Z., et al. Systems pharmacology reveals the mechanism of activity of Ge-Gen-Qin-Lian decoction against LPS-induced acute lung injury: A novel strategy for exploring active components and effective mechanism of TCM formulae. Pharmacol Res. 156, 104759 (2020).
  15. Pinzi, L., Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int J Mol Sci. 20 (18), 4331 (2019).
  16. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8 (6), e1000412 (2010).
  17. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. . Guides for the Care and Use of Laboratory Animals. , (2011).
  18. Ru, J., et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 6, 13 (2014).
  19. Xu, X., et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci. 13 (6), 6964-6982 (2012).
  20. Tao, W., et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol. 145 (1), 1-10 (2013).
  21. Halladay, C. W., Trikalinos, T. A., Schmid, I. T., Schmid, C. H., Dahabreh, I. J. Using data sources beyond PubMed has a modest impact on the results of systematic reviews of therapeutic interventions. J Clin Epidemiol. 68 (9), 1076-1084 (2015).
  22. Daina, A., Michielin, O., Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 7, 42717 (2017).
  23. UniProt, C. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res. 40 (D1), D71-D75 (2012).
  24. Stelzer, G., et al. The GeneCards Suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 54, 1.30.1-1.30.33 (2016).
  25. Amberger, J. S., Hamosh, A. Searching Online Mendelian Inheritance in Man (OMIM): A knowledgebase of human genes and genetic phenotypes. Curr Protoc Bioinformatics. 58, 1.2.1-1.2.12 (2017).
  26. Zhou, Y., et al. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 50 (D1), D1398-D1407 (2022).
  27. Whirl-Carrillo, M., et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 92 (4), 414-417 (2012).
  28. Law, V., et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 42 (D1), D1091-D1097 (2014).
  29. Shannon, P., et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13 (11), 2498-2504 (2003).
  30. Xu, J., et al. Pharmacological mechanisms underlying the neuroprotective effects of Alpinia oxyphylla Miq. on Alzheimer’s disease. Int J Mol Sci. 21 (6), 2071 (2020).
  31. Tang, Y., Li, M., Wang, J., Pan, Y., Wu, F. X. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems. 127, 67-72 (2015).
  32. Yu, G., Wang, L. G., Han, Y., He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 16 (5), 284-287 (2012).
  33. Trott, O., Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 31 (2), 455-461 (2010).
  34. Yang, X., et al. Rational selection of the 3D structure of biomacromolecules for molecular docking studies on the mechanism of endocrine disruptor action. Chem Res Toxicol. 29 (9), 1565-1570 (2016).
  35. Diller, D. J., Merz, K. M. High throughput docking for library design and library prioritization. Proteins. 43 (2), 113-124 (2001).
  36. Hsin, K. Y., Ghosh, S., Kitano, H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One. 8 (12), e83922 (2013).
  37. Godse, N. R., et al. TMEM16A/ANO1 inhibits apoptosis via downregulation of Bim expression. Clin Cancer Res. 23 (23), 7324-7332 (2017).
  38. Ilhan, I., et al. Irbesartan decreased mitochondrial stress-related apoptosis in cisplatin-induced acute kidney injury via regulating BCL-2/BAX signaling. Mol Biol Rep. 49 (7), 6125-6133 (2022).
  39. Lee, M., et al. Protective effect of hydroxysafflor yellow a on nephropathy by attenuating oxidative stress and inhibiting apoptosis in induced Type 2 diabetes in rat. Oxid Med Cell Longev. 2020, 7805393 (2020).
  40. Schlessinger, J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell. 110 (6), 669-672 (2002).
  41. Gu, X., Chu, L., Kang, Y. Angiogenic factor-based signature predicts prognosis and immunotherapy response in non-small-cell lung cancer. Front Genet. 13, 894024 (2022).
  42. Chu, L., et al. Age-related changes in endogenous glucocorticoids, gonadal steroids, endocannabinoids and their ratios in plasma and hair from the male C57BL/6 mice. Gen Comp Endocrinol. 301, 113651 (2021).
  43. Chen, J., Chen, J. K., Harris, R. C. EGF receptor deletion in podocytes attenuates diabetic nephropathy. J Am Soc Nephrol. 26 (5), 1115-1125 (2015).
  44. Skibba, M., et al. New EGFR inhibitor, 453, prevents renal fibrosis in angiotensin II-stimulated mice. Eur J Pharmacol. 789, 421-430 (2016).
This article has been published
Video Coming Soon
Keep me updated:

.

Citar este artigo
Mao, J., Lu, Q., Gao, F., Liu, H., Tan, J. Antagonistic Effect of Jiawei Shengjiang San on a Rat Model of Diabetic Nephropathy: Related to EGFR/MAPK3/1 Signaling Pathway. J. Vis. Exp. (207), e66179, doi:10.3791/66179 (2024).

View Video