Summary

Surgical Lumbar Sympathectomy in Mice

Published: July 05, 2024
doi:

Summary

This manuscript presents a protocol for surgically removing the postganglionic lumbar sympathetic neurons from a mouse. This procedure will facilitate a multitude of studies aimed at investigating the role of sympathetic innervation in distal tissue targets.

Abstract

Peripheral nerve injuries are common, and full functional recovery after injury is achieved in only 10% of patients. The sympathetic nervous system plays many critical roles in maintaining bodily homeostasis, but it has rarely been studied in the context of peripheral nerve injury. The extent of postganglionic sympathetic neuronal functions in distal targets in the periphery is currently unclear. To better explore the role of sympathetic innervation of peripheral targets, a surgical "knock-out" model provides an alternative approach. Although this can be achieved chemically, chemical destruction of postganglionic sympathetic neurons can be nonspecific and dose-dependent. The use of a surgical lumbar sympathectomy in mice, once thought to be "virtually not practicable" in small animals, allows for specific targeting of postganglionic sympathetic neurons that innervate the hind limbs. This manuscript describes how to surgically remove the L2-L5 lumbar sympathetic ganglia from a mouse as a survival surgery, which reliably decreases the hind paw sweat response and the number of sympathetic axons in the sciatic nerve.

Introduction

Peripheral nerve injuries (PNIs) can lead to motor, sensory, and sympathetic deficits in distal tissue targets that rarely fully functionally recover1. PNI research has often focused on the motor and sensory regeneration; however, nearly one-quarter of the rat sciatic nerve consists of unmyelinated sympathetic axons2. The role of sympathetic innervation in the peripheral tissues, nevertheless, is not fully understood3. The sympathetic nervous system plays a major role in maintaining bodily homeostasis, participating in immune regulation, thermoregulation, vascular tone, mitochondrial biogenesis, and more4,5,6,7,8,9,10,11. When sympathetic innervation at the neuromuscular junction is lost, persistent muscle weakness and synaptic instability are observed despite the maintenance of motoneuron innervation12. This sympathetic regulation of synaptic transmission at the neuromuscular junction has been shown to decline with aging13,14, which contributes to sarcopenia, defined as the age-dependent reduction in muscle mass, force, and power15. A better understanding of the role of sympathetic innervation of peripheral tissues is necessary for the development of therapies that will optimize functional outcomes for patients with PNIs and other forms of sympathetic dysfunction.

A sympathectomy is a powerful experimental tool that will allow for investigations of the role of sympathetic innervation in distal target tissues. Specifically, removal of the L2-L5 level sympathetic ganglia removes a majority of the sympathetic innervation to the lower limbs, which is especially useful for investigators interested in the sciatic nerve.

This protocol details the removal of L2-L5 level postganglionic sympathetic neurons from a mouse as a survival surgery. This procedure requires rodent microsurgical skills and familiarity with mouse anatomy, and when performed effectively, does not cause any visible phenotypic differences. A surgical lumbar sympathectomy has been used in rodent research, more so in rats than in mice16,17,18,19,20,21; however, a detailed protocol describing the protocol does not currently exist. Previous studies utilizing the lumbar sympathectomy have primarily focused on the role of sympathetic innervation in the pain response, which is generally attenuated by sympathectomy in various nerve injury models. Fewer studies have used this technique in mice22, likely due to the smaller size of anatomic landmarks, as the use of surgical sympathectomy was believed to be "virtually not practicable" in small animals23,24. Localized sympathectomies in the form of microsympathectomies have also been utilized in rodent models, also mostly in the context of pain behaviors25,26,27. The microsympathectomy, in contrast to the total lumbar sympathectomy, utilizes a dorsal approach through which a segment of the gray ramus to a specific spinal nerve is disconnected and removed, allowing for a very targeted sympathectomy that will avoid wider spread side effects.

Because mouse models are critical for many studies requiring genetic manipulation, this procedure will have versatile applications beyond the breadth of peripheral nerve injuries as well. Using a transabdominal approach, the lumbar sympathetic ganglia can be reliably visualized and resected from the mouse with no apparent adverse effects. Although protocols for the chemical destruction of postganglionic sympathetic neurons are available, such as the use of 6-hydroxydopamine (6-OHDA)23,24, this surgical procedure allows for anatomically specific targeting of the postganglionic lumbar sympathetic ganglia. The use of a surgical sympathectomy also avoids the nonspecific and dose-dependent concerns related to pharmacological methods28,29.

The use of chemical sympathectomies via administration of 6-OHDA was described in 1967 as a simple way to achieve selective destruction of adrenergic nerve endings since surgical sympathectomies in small animals were not favored23,24. 6-OHDA is a catecholaminergic neurotoxin that is endogenously formed in patients with Parkinson's disease, and its toxicity is derived from its ability to form free radicals and inhibit the electron transport chain in mitochondria30,31. Through norepinephrine uptake-1 transport mechanisms, 6-OHDA is able to accumulate within noradrenergic neurons, such as postganglionic sympathetic neurons28. Eventually, the neuron is destroyed by 6-OHDA; however, terminals in the peripheral nervous system do regenerate, with the restoration of functional activity even when the amine levels are still reduced. Different dosage thresholds are also present for different organs in response to 6-OHDA, and higher doses of 6-OHDA have been shown to exhibit more nonspecific effects, extending its neurotoxic consequences to non-catecholamine-containing neurons and even non-neuronal cells. Aside from noradrenergic neurons, dopaminergic neurons are affected by 6-OHDA as well29, making the chemical sympathectomy ultimately less specific to postganglionic sympathetic neurons than the surgical sympathectomy.

Therefore, a surgical lumbar sympathectomy enables the targeted ablation of the sympathetic innervation to the lower limbs, which can be combined with a variety of experimental techniques and genetic manipulations in the mouse to study how the sympathetic nervous system contributes to various injury and disease states.

Protocol

All experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of Emory University (under the IACUC protocol number PROTO201700371). Four adult female wild-type C57BL/6J mice, aged 14 weeks and weighing between 16-21 g, were used in this study. The details of the reagents and equipment used here are listed in the Table of Materials. 1. Presurgical preparation Autoclave the surgical tools: 1 pair of sharp scissors, 2 fine-t…

Representative Results

This protocol describes the surgical removal of postganglionic lumbar sympathetic neurons from a mouse. Two mice received lumbar sympathectomies, and two mice served as controls. To achieve a successful surgical lumbar sympathectomy, adequate visualization of at least the L2 and L3 bilateral lumbar sympathetic ganglia must be achieved, as seen in Figure 1. Removal of the L4 and L5 ganglia would achieve complete sympathetic denervation of the lower body; however, visualization of the lower ga…

Discussion

The lumbar sympathetic ganglia are very small structures located behind many critical abdominal organs and large vessels. Therefore, this procedure requires significant precision and accuracy. Much of the difficulty lies in identifying the sympathetic ganglia intraoperatively. It is suggested that the learner first be able to identify the ganglia in a mouse cadaver prior to attempting this procedure in a live mouse. Troubleshooting will often need to occur when identifying the sympathetic ganglia after the diversion of t…

Declarações

The authors have nothing to disclose.

Acknowledgements

This work was supported by the NIH National Institute of Neurological Disorders and Stroke under award number K01NS124912 and in part by a developmental grant from the NIH-funded Emory Specialized Center of Research Excellence in Sex Differences U54AG062334 and the Medical Scientist Training Program of Emory University School of Medicine. Thank you to David Kim, postbaccalaureate, for sectioning sciatic nerves and to HaoMin SiMa, research specialist, for 3D printing a phone mount for our stereo microscope that allowed for the filming of the video.

Materials

5-0 absorable suture CP Medical 421A
5-0 nylon suture Med-Vet International MV-661
70% ethanol Sigma-Aldrich E7023-4L
Anesthesia Induction Chamber Kent Scientific VetFlo VetFlo-0530XS
Anesthesia Vaporizer Kent Scientific VetFlo 13-005-202
Betadine HealthyPets BET16OZ
C57BL/6J mice Jackson Laboratory #000664
Chicken anti-neurofilament-heavy Abcam ab72996
Cryostat Leica CM1850
Data Analysis Software Prism
Eye lubricant Refresh Refresh P.M.
Fine-tipped tweezers World Precision Instruments 500233
Fluorescent microscope Nikon Ti-E
Goat anti-chicken 488 Invitrogen A32931
Goat anti-rabbit 647 Invitrogen A21245
Heating pad Braintree Scientific 39DP
Image Analysis Software Fiji
Imaging Software Nikon NIS-Elements
Isoflurane Med-Vet International RXISO-250
Meloxicam Med-Vet International RXMELOXIDYL32
Needle driver Roboz Surgical Store RS-7894
Normal Goat Serum Abcam ab7481
Phox2bCre:tdTomato mutant mice Jackson Laboratory  #016223, #007914
Pilocarpine hydrochloride Sigma-Aldrich P6503
Rabbit anti-tyrosine hydroxylase Abcam ab112
Small straight scissors  Fine Science Tools 14084-09
Sterile cotton swabs 2×2 Dynarex 3252
Sterile cotton tipped applicators Dynarex 4301
Sterile drape Med-Vet International DR4042
Sterile saline solution Med-Vet International 1070988-BX
ThCre:mTmG mutant mice Mutant Mouse Resource and Research Centers strain #017262-UCD Jackson Laboratory, strain #007576
ThCre:tdTomato mutant mice European Mouse Mutant Archive strain #00254 Jackson Laboratory, strain #007914

Referências

  1. Scholz, T., et al. Peripheral nerve injuries: An international survey of current treatments and future perspectives. J Reconstr Microsurg. 25 (06), 339-344 (2009).
  2. Schmalbruch, H. Fiber composition of the rat sciatic nerve. Anat Rec. 215 (1), 71-81 (1986).
  3. Tian, T., Moore, A. M., Ghareeb, P. A., Boulis, N. M., Ward, P. J. A perspective on electrical stimulation and sympathetic regeneration in peripheral nerve injuries. Neurotrauma Rep. 5 (1), 172-180 (2024).
  4. Gagnon, D., Crandall, C. G. Sweating as a heat loss thermoeffector. Hand Clin Neurol. 156, 211-232 (2018).
  5. Grassi, G. Role of the sympathetic nervous system in human hypertension. J Hypertens. 16 (12), 1979-1987 (1998).
  6. Dibona, G. F. Sympathetic nervous system and the kidney in hypertension. Curr Opin Nephrol Hypertens. 11 (2), 197-200 (2002).
  7. Elenkov, I. J., Wilder, R. L., Chrousos, G. P., Vizi, E. S. The sympathetic nerve-An integrative interface between two supersystems: The brain and the immune system. Pharmacol Rev. 52 (4), 595-638 (2000).
  8. Besedovsky, H. O., Del Rey, A., Sorkin, E., Da Prada, M., Keller, H. Immunoregulation mediated by the sympathetic nervous system. Cell Immunol. 48 (2), 346-355 (1979).
  9. Straka, T., et al. Postnatal development and distribution of sympathetic innervation in mouse skeletal muscle. Int J Mol Sci. 19 (7), 1935 (2018).
  10. Geng, T., et al. Pgc-1α plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. Am J Physiol Cell Physiol. 298 (3), C572-C579 (2010).
  11. Lin, J., Handschin, C., Spiegelman, B. M. Metabolic control through the pgc-1 family of transcription coactivators. Cell Metab. 1 (6), 361-370 (2005).
  12. Khan, M. M., et al. Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease. Proc Natl Acad Sci. 113 (3), 746-750 (2016).
  13. Delbono, O., Rodrigues, A. C. Z., Bonilla, H. J., Messi, M. L. The emerging role of the sympathetic nervous system in skeletal muscle motor innervation and sarcopenia. Ageing Res Rev. 67, 101305 (2021).
  14. Rodrigues, A. C. Z., et al. Heart and neural crest derivative 2-induced preservation of sympathetic neurons attenuates sarcopenia with aging. J Cachexia Sarcopenia Muscle. 12 (1), 91-108 (2021).
  15. Rosenberg, I. H. Summary comments. Am J Clin Nutr. 50 (5), 1231-1233 (1989).
  16. Murata, Y., Olmarker, K., Takahashi, I., Takahashi, K., Rydevik, B. Effects of lumbar sympathectomy on pain behavioral changes caused by nucleus pulposus-induced spinal nerve damage in rats. Eur Spine J. 15, 634-640 (2006).
  17. Xie, J., Park, S. K., Chung, K., Chung, J. M. The effect of lumbar sympathectomy in the spinal nerve ligation model of neuropathic pain. J Pain. 2 (5), 270-278 (2001).
  18. Lee, D. H., Katner, J., Iyengar, S., Lodge, D. The effect of lumbar sympathectomy on increased tactile sensitivity in spinal nerve ligated rats. Neurosci Lett. 298 (2), 99-102 (2001).
  19. Ringkamp, M., et al. Lumbar sympathectomy failed to reverse mechanical allodynia-and hyperalgesia-like behavior in rats with l5 spinal nerve injury. Pain. 79 (2-3), 143-153 (1999).
  20. Zhao, C., et al. Lumbar sympathectomy attenuates cold allodynia but not mechanical allodynia and hyperalgesia in rats with spared nerve injury. J Pain. 8 (12), 931-937 (2007).
  21. Zheng, Z. -. F., et al. Recovery of sympathetic nerve function after lumbar sympathectomy is slower in the hind limbs than in the torso. Neural Regen Res. 12 (7), 1177 (2017).
  22. Holmberg, K., Shi, T. -. J. S., Albers, K. M., Davis, B. M., Hökfelt, T. Effect of peripheral nerve lesion and lumbar sympathectomy on peptide regulation in dorsal root ganglia in the ngf-overexpressing mouse. Exp Neurol. 167 (2), 290-303 (2001).
  23. Thoenen, H., Tranzer, J. Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmakol. 261, 271-288 (1968).
  24. Thoenen, H., Tranzer, J. P., Häusler, G. Chemical sympathectomy with 6-hydroxydopamine. New Aspects of Storage and Release Mechanisms of Catecholamines. , 130-143 (1970).
  25. Xie, W., et al. Localized sympathectomy reduces mechanical hypersensitivity by restoring normal immune homeostasis in rat models of inflammatory pain. J Neuroscience. 36 (33), 8712-8725 (2016).
  26. Zhu, X., Xie, W., Zhang, J., Strong, J. A., Zhang, J. -. M. Sympathectomy decreases pain behaviors and nerve regeneration by downregulating monocyte chemokine ccl2 in dorsal root ganglia in the rat tibial nerve crush model. Pain. 163 (1), e106-e120 (2022).
  27. Tonello, R., et al. Local sympathectomy promotes anti-inflammatory responses and relief of paclitaxel-induced mechanical and cold allodynia in mice. Anesthesiology. 132 (6), 1540-1553 (2020).
  28. Kostrzewa, R. M., Jacobowitz, D. M. Pharmacological actions of 6-hydroxydopamine. Pharmacol Rev. 26 (3), 199-288 (1974).
  29. Michel, P., Hefti, F. Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture. J Neuroscience Res. 26 (4), 428-435 (1990).
  30. Andrew, R., et al. The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochemical Res. 18, 1175-1177 (1993).
  31. Glinka, Y., Gassen, M., Youdim, M. Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl. 5, 55-66 (1997).
  32. Treuting, P. M., Dintzis, S. M., Montine, K. S. . Comparative anatomy and histology: A mouse, rat, and human atlas. , (2017).
  33. Hweidi, S. A., Lee, S., Wolf, P. Effect of sympathectomy on microvascular anastomosis in the rat. Microsurgery. 6 (2), 9-96 (1985).
  34. Navarro, X., Kennedy, W. R. Sweat gland reinnervation by sudomotor regeneration after different types of lesions and graft repairs. Exp Neurol. 104 (3), 229-234 (1989).
  35. Gaudet, A. D., Popovich, P. G., Ramer, M. S. Wallerian degeneration: Gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation. 8 (1), 1-13 (2011).
  36. Babetto, E., et al. Targeting nmnat1 to axons and synapses transforms its neuroprotective potency in vivo. J Neuroscience. 30 (40), 13291-13304 (2010).
  37. Brumovsky, P. R. Dorsal root ganglion neurons and tyrosine hydroxylase-an intriguing association with implications for sensation and pain. Pain. 157 (2), 314 (2016).
  38. Tian, T., Harris, A., Owyoung, J., Sima, H., Ward, P. J. Conditioning electrical stimulation fails to enhance sympathetic axon regeneration. bioRxiv. , (2023).
  39. Tian, T., Ward, P. J. The ThCre: Mtmg mouse has sparse expression in the sympathetic nervous system. bioRxiv. , (2023).
  40. Ohman-Gault, L., Huang, T., Krimm, R. The transcription factor Phox2b distinguishes between oral and non-oral sensory neurons in the geniculate ganglion. J Comparative Neurol. 525 (18), 3935-3950 (2017).
  41. Pattyn, A., Morin, X., Cremer, H., Goridis, C., Brunet, J. -. F. The homeobox gene phox2b is essential for the development of autonomic neural crest derivatives. Nature. 399 (6734), 366-370 (1999).
  42. François, M., et al. Sympathetic innervation of the interscapular brown adipose tissue in mouse. Ann N Y Acad Sci. 1454 (1), 3-13 (2019).
This article has been published
Video Coming Soon
Keep me updated:

.

Citar este artigo
Tian, T., Ward, P. J. Surgical Lumbar Sympathectomy in Mice. J. Vis. Exp. (209), e66821, doi:10.3791/66821 (2024).

View Video