Back to chapter

16.14:

定性分析

JoVE Core
Chemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Chemistry
Qualitative Analysis

Languages

Share

When an unknown solution contains a mixture of several different metal ions, the cations can be identified by a systematic series of selective precipitations, called qualitative analysis. At each step of the analysis, a different precipitating reagent is added. These reagents selectively precipitate some cations as insoluble salts, which can be removed, while the others continue to remain in solution. In aqueous solutions, there are 22 commonly occurring cations that can be divided into five groups based on the solubility products of their insoluble salts. Group 1 cations are metal ions that form insoluble chlorides. Most chloride salts are soluble in water. So, when the aqueous solution of metal ions is treated with 6 M hydrochloric acid, a precipitate would indicate a group 1 metal ion, such as silver, lead, or mercury. If no precipitate forms, it indicates there are no group 1 cations present in the solution. This mixture is then centrifuged or filtered to separate the solid precipitate and the aqueous supernatant. Next, hydrogen sulfide gas is bubbled through the acidic supernatant. The reaction between metal ions and hydrogen sulfide produces metal sulfide and protons. Due to the addition of hydrochloric acid in the previous step, the high concentration of protons shifts the equilibrium towards the reactants. Thus, under acidic conditions, only group 2 metal ions that form highly insoluble sulfide salts precipitate, while other metal sulfides that are slightly more soluble remain in solution. Next, group 3 cations, which consist of base-insoluble sulfides and hydroxides, are precipitated. Sodium hydroxide is added to the supernatant from the previous step to establish basic conditions. This addition depletes protons from the metal sulfide precipitation reaction, and the equilibrium moves towards the products. As a result, many metal sulfides that were soluble in acidic conditions now become insoluble and form precipitates. Additionally, metal ions that form insoluble hydroxides, such as iron, aluminum, and chromium, precipitate out of the solution. When this mixture is separated, only the alkali and alkaline earth metal ions remain in solution. The alkaline earth metals, which constitute group 4 cations, form insoluble phosphates. The addition of diammonium hydrogen phosphate to the basic supernatant causes magnesium, calcium, barium, and strontium ions to precipitate. The liquid decanted from this step contains the group 5 cations. These cations do not form insoluble salts and need to be identified individually. If adding sodium hydroxide to the solution in the previous steps released a gas with the characteristic smell of ammonia, then ammonium ions were present in the mixture. Sodium and potassium ions can be identified with a flame test. Sodium ions produce a bright yellow flame while a violet flame indicates potassium ions.

16.14:

定性分析

異なる陽イオンの混合物を含む溶液の場合、各陽イオンの識別は定性分析によって行うことができます。この方法では、異なる化学試薬を用いて一連の選択的な沈殿を行い、各反応で特定のグループの陽イオンに特徴的な沈殿物を生成させます。グループ内の金属イオンは、pHを変化させたり、混合物を加熱して沈殿物を再溶解させたり、他の試薬を加えて複合イオンを形成させたりすることで、さらに分離されます。

例えば、Ba2+、Ca2+、Mg2+などの不溶性の炭酸塩やリン酸塩からなるII族陽イオンは、塩基性溶液中のリン酸水素二アンモニウム((NH4)2HPO4)の存在下で、いずれも白色の沈殿物を生成します。沈殿物は希薄な酢酸に溶解します。各陽イオンを同定するために、確認試験を行う。

3つの陽イオンはすべて、クロム酸カリウム(K2CrO4)を加えると明るい黄色のクロム酸塩を形成しますが、クロム酸バリウム(BaCrO4)だけは酢酸に不溶です。この溶液をろ過すると、ろ液にはCa2+とMg2+が含まれます。

このろ液を2つに分けて、残りの陽イオンを調べることができます。シュウ酸アンモニウム((NH4)2C2O4)溶液の存在下で、溶液が白い沈殿物を形成すれば、Ca2+イオンの存在を確認できます。白い沈殿物はシュウ酸カルシウムであり、水にも酢酸にも不溶です。

Mg2+は、木炭空洞試験によって識別できます。この試験では、金属炭酸塩が木炭の空洞の中で対応する金属酸化物に分解されます。残留物の色が、可能性のある陽イオンを示します。酸化マグネシウム(MgO)は、木炭の空洞に白い残留物を残します。この残留物を数滴の硝酸コバルト(Co(NO3)2)水溶液で処理します。熱を加えると硝酸コバルトは酸化コバルト(II)に分解され、ピンク色のアマルガム(CoO-MgO)を形成し、Mg2+の存在を確認できます。

Suggested Reading

  1. Cole Jr, G. Mattney, and William H. Waggoner. "Qualitative analysis." Journal of Chemical Education 60, no. 2 (1983): 135.
  2. Lo, Glenn V. "Relating Qualitative Analysis to Equilibrium Principles." Journal of Chemical Education 78, no. 11 (2001): 1557.
  3. Ricketts, John A., and Eugene P. Schwartz. "The Elemental Analysis of an Alloy: An Analytical Scheme to Emphasize Cation Chemistry.” In Proceedings of the Indiana Academy of Science, vol. 101, no. 1-2, pp. 67-74. 1992.