Back to chapter

4.1:

Compounds Essential to Human Function

JoVE Core
Anatomy and Physiology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Anatomy and Physiology
Compounds Essential to Human Function

Languages

Share

The human body is composed of many organic and inorganic compounds. The two main classes of these compounds includes nutrients derived from food and metabolites from various biochemical reactions that occur in the body. Nutrients can be categorized into macronutrients, such as carbohydrates, protein, and fats that are needed by the body in large quantities, and micronutrients, such as vitamins and minerals. Carbohydrates and lipids act as fuel and energy reserves to support cellular activities, while proteins catalyze biochemical reactions and also ensure the structural integrity of tissue and organs. Although needed in very small amounts, vitamins and minerals are crucial to maintain physiological and regulatory functions in the body, including healing, growth, and immunity. Besides nutrients, the human body also requires oxygen and water. Oxygen is essential to generate energy from food, and water is the chief component of various body fluids like saliva, and plasma. Metabolites are small molecules, such as amino acids and carbon dioxide, that are important to maintain physiological homeostasis within the body.

4.1:

Compounds Essential to Human Function

The human body is composed of cells that are fundamentally made up of several different molecules. These molecules are essential to carry out all physiological processes in the body and are broadly classified into organic and inorganic based on their chemical structures.

Inorganic Compounds Essential to Human Functioning

Inorganic compounds essential to human functioning include water, salts, acids, and bases. These compounds are inorganic, i.e., they do not have a carbon-hydrogen bond. Water is a lubricant, a cushion, a heat sink, a component of liquid mixtures, a by-product of dehydration synthesis reactions, and a reactant in hydrolysis reactions. Salts are an important group of compounds and a source of several minerals. When dissolved in water, salts dissociate into ions other than H+ or OH. In contrast, acids release H+ in the solution upon dissociation. Bases accept H+, thereby making the solution more alkaline. Salts, acids, and bases, collectively termed electrolytes, are essential for homeostatic control mechanisms of body fluids.

Organic Compounds Essential to Human Functioning

Organic compounds, including carbohydrates, lipids, proteins, and nucleotides, are also vital for the body. These compounds are defined as organic because they contain carbon and hydrogen. Carbohydrates are a unique group of compounds that act as fuel to generate energy for the body. They include monosaccharides such as glucose; disaccharides such as lactose; and polysaccharides, including starches (polymers of glucose), glycogen (the storage form of glucose), and indigestible dietary fibers.

Lipids are hydrophobic compounds that act as a source of reserve energy and are also essential components of many cell organelles, such as cell membranes. Phospholipids are amphipathic, meaning they contain both hydrophobic and hydrophilic groups. In the cell membrane, their hydrophilic phosphate heads face the water present outside and inside the cell, whereas the hydrophobic tails face each other to form a bilayer. Triglycerides are the most abundant lipid in the body, composed of a glycerol backbone attached to three fatty acid chains. Some lipid derivatives, like prostaglandins, act as signaling molecules.

Proteins are critical components of all body tissues. They are composed  of amino acid monomers  joined by peptide bonds to form long polypeptide chains. These polypeptide chains fold to form a secondary and tertiary structure.

The nucleic acids, DNA and RNA, are polymers of nucleotides. These nucleotides are primarily composed of three primary building blocks— a phosphate group, a pentose sugar, and a nitrogenous base. DNA stores genetic information. This information is transferred to the RNA. The RNA acts as a blueprint for protein synthesis essential to the survival and reproduction of an organism.

Adenosine triphosphate (ATP) is composed of a ribose sugar, an adenine base, and three phosphate groups. It is classified as a high-energy compound because the two covalent bonds linking to three phosphates store a significant amount of potential energy. The energy released from these high-energy bonds in the body helps fuel the body's activities, such as muscle contraction, nutrient transport, and metabolic reactions.

This text is adapted from Openstax, Anatomy and Physiology 2e, Section 2.4: Inorganic Compounds Essential to Human Functioning; Openstax, Anatomy and Physiology 2e, Section 2.5: Organic Compounds Essential to Human Functioning.