Summary

波谱与自发拉曼显微荧光背景的抑制

Published: May 18, 2011
doi:

Summary

我们讨论一个复杂的非线性光学系统,采用超快全光开关,隔离荧光信号的拉曼的建设和运营。使用这个系统,我们能够成功地分离的拉曼光谱和荧光信号,利用脉冲能量和平均的权力,保持生物安全。

Abstract

拉曼光谱仪是常常困扰着一个强烈的荧光背景,特别是对生物样品。如果样品是兴奋的超短脉冲,一个系统,可以暂时分离频谱重叠信号皮秒时间尺度可以隔离的火车,及时到达迟到荧光光的拉曼散射光。在这里,我们讨论一个复杂的非线性光学系统,采用全光开关在一个低功率光学克尔门的形式,隔离拉曼光谱和荧光信号的建设和运营。一个单一的808 nm的激光2.4 W的平均功率和80 MHz的重复率是分裂的,与约200毫瓦808纳米的光被转换为<5兆瓦404 nm的光发送到的样本,以激发拉曼散射。其余未转换的808纳米的光,然后发送到非线性介质泵全光快门行为。快门打开和关闭了约5%的峰值效率在800 FS。使用这个系统,我们能够成功地分离拉曼光谱和荧光信号,在80 MHz的重复使用的脉冲能量和平均的权力,保持生物安全。由于该系统具有光功率没有余力,我们几个细节设计和调整的考虑,有助于最大限度地提高系统的吞吐量。我们还讨论了克尔介质内的信号和泵光束的空间和时间上的重叠,以及详细的协议光谱采集获得的协议。最后,我们报告了几个有代表性的拉曼光谱中存在强荧光,用我们的时间浇注系统取得的成果。

Protocol

1。在准备,并把这个系统内的拉曼样品,必须采取一定的照顾。 由于该系统通常使用非常高数​​值孔径物镜,工作距离很短,样品置于盖玻片上。生物样品通常是放置在1号安装盖玻片厚度Attofluor细胞室(Invitrogen公司,卡尔斯巴德,加利福尼亚州)。 液体样品,特别是那些对人体无毒,被放置在一个小玻璃瓶,巩固有机硅环氧开幕盖玻片。瓶子,然后倒测量。 因为我们?…

Discussion

拉曼光谱生物医学领域已经看到在过去的几年中,作为其表现出的潜力解决一些困难的挑战,在生物诊断的越来越大的兴趣。例如,拉曼光谱已经证明,在癌症的检测3,4,5,6诊断价值。拉曼光谱技术也已用于细菌定量7,8和细菌对药物的反应9。它也发现在其他医学领域的应用范围从骨骼健康10 biofluid分析,11,12的广泛应用。

然而,…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由美国国家科学基金会奖DBI的0852891。号PHY0120999根据合作协议,由加利福尼亚大学戴维斯分校生物光子科学与技术,一个指定的美国国家科学基金会科学技术中心管理中心还资助了这项工作的一部分。

Materials

Name Company Catalog Number Comments
Lenses ThorLabs Various All lenses coated to have maximum transmission losses of 1% each
Tunable Ti:Sapph laser Coherent Chameleon 30 nJ, 200 fs, 80 MHz
40X oil immersion objective Olympus UApo/340 NA = 1.35
Inverted microscope Olympus IX-71 Modified to remove all lenses in side port
Half wave plate Thorlabs AHWP05M-600  
Glan-Thompson polarizer Thorlabs GTH10M ˜10% transmission loss
Spectrometer PI Acton SP2300i  
CCD PI Acton Pixis 100B  
Mathmatical software The MathWorks MATLAB version 2008a
Faraday isolator EOT BB8-5I  
Piezo-electric mirror Newport AG-M100  
BBO crystal CASIX custom 1 mm thickness
Bandpass filter 1 Andover 008FC14 808 ± 0.4 nm
Dichroic mirror Semrock FF662-FDI01 band edge at 662 nm
Long-pass filter Semrock BLP01-405R band edge at 417 nm
Bandpass filter 2 Semrock FF02-447/60 417-447 nm
CS2 Sigma-Aldrich 335266 99% purity
Coumarin 30 Sigma-Aldrich 546127 99% purity
Immersion oil Cargille 16242 Type DF

References

  1. Savitzky, A., Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry. 36, 1627-1639 (1964).
  2. Lieber, C. A., Mahadevan-Jansen, A. Automated method for subtraction of fluorescence from biological Raman spectra. Applied Spectroscopy. 57, 1363-1367 (2003).
  3. Gniadecka, M. Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue. Journal of Investiga-tive Dermatology. 122, 443-449 (2004).
  4. Lieber, C. A., Majumder, S. K., Billheimer, D., Ellis, D. L., Mahadevan-Jansen, A. Raman microspectroscopy for skin cancer detection in vitro. Journal of Biomedical Optics. 13, 024013-024013 (2008).
  5. Chen, K., Qin, Y., Zheng, F., Sun, M., Shi, D. Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells. Optics Letters. 31, 2015-2017 (2006).
  6. Chan, J. W. Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy. Analytical Chemistry. 80, 2180-2187 (2008).
  7. Zhu, Q. Y., Quivey, R. G., Berger, A. J. Measurement of bacterial concentration fractions in polymicrobial mixtures by Raman microspectroscopy. Journal of Biomedical Optics. 9, 1182-1186 (2004).
  8. Rösch, P. Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean-room-relevant biological contaminations. Applied and Environmental Microbiology. 71, 1626-1637 (2005).
  9. Moritz, T. J. Raman spectroscopic signatures of the metabolic states of escherichia coli cells and their dependence on antibiotics treatment. Biophysical Journal. 98, 742a-742a (2010).
  10. Dehring, K. A. Identifying chemical changes in subchondral bone taken from murine knee joints using Raman spectroscopy. Applied Spectroscopy. 60, 1134-1141 (2006).
  11. Berger, A. J., Koo, T. W., Itzkan, I., Horowitz, G., Feld, M. S. Multicomponent blood analysis by near-infrared Raman spectroscopy. Applied Optics. 38, 2916-2926 (1999).
  12. Qi, D., Berger, A. J. Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy. Applied Spectroscopy. 46, 1726-1734 (2007).
  13. Beier, B. D., Berger, A. J. Method for automated background subtraction from Raman spectra containing known contaminants. The Analyst. 134, 1198-1202 (2009).
  14. De Luca, A. C., Mazilu, M., Riches, A., Herrington, C. S., Dholakia, K. Online fluorescence suppression in modulated Raman spectroscopy. Analytical Chemistry. 82, 738-745 (2010).
  15. Evans, C. L. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proceedings of the National Academy of Sciences of the United States of America. 102, 16807-16812 (2005).
  16. Jones, W. J., Stoiche, . Inverse raman spectra: Induced absorption at optical frequencies. Physical Review Letters. 13, 657-659 (1964).
  17. Freudiger, . Label-Free et Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy. Science. 322, 1857-1861 (2008).
  18. Cui, M., Bachler, B. R., Ogilvie, J. P. Comparing coherent and spontaneous Raman scattering under biological imaging conditions. Optics Letters. 34, 773-775 (2009).
  19. Matousek, P., Towrie, M., Stanley, A., Parker, A. W. Efficient rejection of fluorescence from Raman spectra using picosecond Kerr gating. Applied Spectroscopy. 53, 1485-1489 (1999).
  20. Matousek, P. Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate. Journal of Raman Spectroscopy. 32, 983-988 (2001).
  21. Knorr, F., Smith, Z. J., Wachsmann-Hogiu, S. Development of a time-gated system for Raman spectroscopy of biological samples. Optics Express. 18, 20049-20058 (2010).
check_url/2592?article_type=t

Play Video

Cite This Article
Smith, Z. J., Knorr, F., Pagba, C. V., Wachsmann-Hogiu, S. Rejection of Fluorescence Background in Resonance and Spontaneous Raman Microspectroscopy. J. Vis. Exp. (51), e2592, doi:10.3791/2592 (2011).

View Video