Summary

Grabación de células enteras de una rebanada preparación organotípicos del neocórtex

Published: June 03, 2011
doi:

Summary

Este es un protocolo para preparar y mantener una rebanada preparación neocortical en la cultura organotípicos con el propósito de realizar grabaciones eléctricas de las neuronas piramidales.

Abstract

Hemos estado estudiando el papel funcional de expresión y de voltaje canales de potasio en las neuronas piramidales de la corteza cerebral de rata. Debido a la falta de agentes farmacológicos específicos para estos canales, hemos tomado un enfoque genético para la manipulación de la expresión del canal. Utilizamos una preparación cultivo organotípico (16) con el fin de mantener la morfología celular y el patrón laminar de la corteza. Por lo general aislar aguda rebanadas neocortical en 8-10 días después del parto y mantener los cortes en la cultura durante 3-7 días. Esto nos permite estudiar las neuronas a una edad similar a los de nuestro trabajo con las rebanadas de agudos y reduce al mínimo el desarrollo de una exuberante conexiones excitadoras en el corte. Grabamos de forma visual se identifican las neuronas piramidales en las capas II / III o V con iluminación por infrarrojos (IR) y microscopía de contraste de interferencia diferencial (DIC) con pinza de toda mancha de células en la corriente o voltaje-clamp. Usamos biolística (pistola de genes) de la transfección de tipo salvaje o mutante de ADN del canal de potasio para manipular la expresión de los canales para estudiar su función. Las células transfectadas son fácilmente identificables por microscopía de epifluorescencia después de co-transfección con ADNc para la proteína verde fluorescente (GFP). Se comparan las grabaciones de las células transfectadas con las neuronas adyacentes, untransfected en la misma capa de la misma división.

Protocol

1. Preparativos antes del Día de rebanar Encontramos que es más eficiente para autoclave de los instrumentos quirúrgicos y de preparar las soluciones antes de la fecha de corte. Autoclave de los instrumentos. (La cirugía y el corte se realiza bajo condiciones de semi-estériles). Autoclave de los siguientes paquetes, envueltos individualmente en papel de autoclave: Paquete de la cirugía: espátula, # 22 mango bisturí, tijeras, pinzas </…

Discussion

Hemos estado estudiando el papel funcional de expresión y de voltaje canales de potasio en las neuronas piramidales de la corteza cerebral de rata (4, 9-11). Debido a la falta de agentes farmacológicos específicos para estos canales, se utiliza un enfoque genético para la manipulación de la expresión del canal (1,14,15,17-19). Utilizamos una preparación de la cultura organotípicos (2,3; 5-8; 12,13,15-22). Modificada del enfoque de Stoppini et al (16), a fin de mantener la morfología celular y …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Los autores desean agradecer a Mayumi Sakuraba y Foehring Rebecca de asistencia técnica excepcional. Además, nos gustaría agradecer a los Dres. Rodrigo Andrade para la asistencia en la implementación de la cultura rebanada organotípicos y protocolos de transfección biolística y la Dra. Jeanne Nerbonne por darnos construcciones de ADNc para la transfección. Este trabajo fue apoyado por el NIH subvención: NS044163 del NINDS (a RCF).

Materials

Surgery / transfection / culture:

  1. Brain Slicer: Campden Vibroslice #MA572 World Precision Instruments, Sarasota, FL, USA
  2. Gene Gun System: Bio-Rad Helios # 165-2431 (Bio-Rad Laboratories, 1000 Alfred Nobel Drive, Hercules, CA 94547)
    • Includes: Gene gun, helium hose assembly with regulator, tubing prep station (#165-2418), syringe kit, Tefzel tubing, tubing cutter, optimization kit (#165-2424), tubing cutter
    • Bio-Rad Helium Regulator (#165-2413)
    • disposable supplies for Helios from Bio-Rad:
      • 1.6 μm Gold Microcarriers: #165-2264
      • Tefzel Tubing: #165-2441
  3. Incubator: Forma Scientific model # 3110 (Thermo-Scientific: (866) 984- 3766).

Media:

  1. Horse Serum: Hyclone donor equine #SH 30074. (HyClone, 925 West 1800 South, Logan, UT 84321)
  2. HMEM (Minimal Essential Media plus HBSS and HEPES, no glutamine: Lonza BioWhittaker Catalog #12-137F): GIBCO/INVITROGEN, (800) 955- 6288, Option 1.
  3. HBSS (GIBCO Hanks buffered saline, #24020-117): GIBCO/INVITROGEN, (800) 955- 6288, Option 1.
  4. MEM (GIBCO minimal essential medium, #12360-038), GIBCO/INVITROGEN, (800) 955- 6288, Option 1.
  5. 250 mL Millipore 0.2 μm filter: #SC6PU02RE
  6. Plastic Transfer pipettes: Fisher #13-711-20.
  7. 50 mL Millipore steriflip 0.22 μm filter (#SCGP00525)

Items 6-8 obtained from: Fisher Scientific, 1241 Ambassador Blvd, P.O. Box 14989, St. Louis, MO 63132.

Recording:

  1. Pipet glass: Harvard GC150TF-10: Harvard Apparatus, 84 October Hill Road, Holliston, Massachusetts 01746
  2. Sutter P-87 horizontal electrode puller: Sutter Instrument Company, One Digital Drive, Novato, CA 94949
  3. Axon Instruments Multiclamp 700B amplifier: Molecular Devices, Inc. 1311 Orleans Drive, Sunnyvale, CA 94089-1136
  4. PClamp 10 data acquisition software: Molecular Devices, Inc., 1311 Orleans Drive, Sunnyvale, CA 94089-1136
  5. lectrode position is controlled with Sutter ROE-200 manipulators and PC-200 controller: Sutter Instrument Company, One Digital Drive, Novato, CA 94949.
  6. Microscope: Olympus BX-50WI upright microscope with IR-DIC optics
  7. IR-sensitive camera OLY-150 (Olympus) or DAGE-MTI (DAGE-MTI, 01 North Roeske Avenue, Michigan City, IN 46360).

References

  1. Beique, J. C., Imad, M., Mladenovic, L., Gingrich, J. A., Andrade, R. Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci U S A. 104, 9870-9875 (2007).
  2. Buonomano, D. V. Timing of neural responses in cortical organotypic slices. Proc Natl Acad Sci U S A. 100, 4897-4902 (2003).
  3. Caeser, M., Bonhoeffer, T., Bolz, J. Cellular organization and development of slice cultures from rat visual cortex. Exp Brain Res. 77, 234-244 (1989).
  4. Foehring, R. C., Toleman, T., Higgs, M., Guan, D., Spain, W. J. Actions of Kv2.1 channels in rat neocortical pyramidal neurons. Soc Neurosci Abstr. 34, (2009).
  5. Gähwiler, B. H. Organotypic monolayer cultures of nervous tissue. J Neurosci Methods. 4, 329-342 (1981).
  6. Gähwiler, B. H. Organotypic cultures of neural tissue. Trends Neurosci. 11, 484-489 (1988).
  7. Gähwiler, B. H., Capogna, M., Debanne, D., McKinney, R. A., Thompson, S. M. Organotypic slice cultures: a technique has come of age. Trends Neurosci. 20, 471-477 (1997).
  8. Gähwiler, B. H., Thompson, S. M., Muller, D. Preparation and Maintenance of Organotypic Slice Cultures of CNS Tissue. Current Protocols in Neuroscience. , 6.11.1-6.11.11 (2001).
  9. Guan, D., Lee, J. C., Tkatch, T., Surmeier, D. J., Armstrong, W. E., Foehring, R. C. Expression and biophysical properties of Kv1 channels in supragranular neocortical pyramidal neurones. J Physiol. 571, 371-389 (2006).
  10. Guan, D., Lee, J. C. F., Higgs, M., Spain, W. J., Armstrong, W. E., Foehring, R. C. Functional roles of Kv1 containing channels in neocortical pyramidal neurons. J. Neurophysiol. 97, 1931-1940 (2007).
  11. Guan, D., Tkatch, T., Surmeier, D. J., Armstrong, W. E., Foehring, R. C. Kv2 subunits underlie slowly inactivating potassium current in rat neocortical pyramidal neurons. J Physiol. 581, 941-960 (2007).
  12. Johnson, H. A., Buonomano, D. V. A method for chronic stimulation of cortical organotypic cultures using implanted electrodes. Neurosci Methods. 176, 136-143 (2009).
  13. Johnson, H. A., Buonomano, D. V. Development and plasticity of spontaneous activity and Up states in cortical organotypic slices. J Neurosci. 27, 5915-5925 (2007).
  14. Malin, S. A., Nerbonne, J. M. Delayed rectifier K+ currents, IK, are encoded by Kv2 alpha-subunits and regulate tonic firing in mammalian sympathetic neurons. J Neurosci. 22, 10094-10105 (2002).
  15. O’Brien, J. A., Holt, M., Whiteside, G., Lummis, S. C., Hastings, M. H. Modifications to the hand-held Gene Gun: improvements for in vitro biolistic transfection of organotypic neuronal tissue. J Neurosci Methods. 112, 57-64 (2001).
  16. Stoppini, L., Buchs, P. A., Muller, D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods. 37, 173-182 (1991).
  17. Villalobos, C., Shakkottai, V. G., Chandy, K. G., Michelhaugh, S. K., Andrade, R. SKCa channels mediate the medium but not the slow calcium-activated afterhyperpolarization in cortical neurons. J Neurosci. 24, 3537-3542 (2004).
  18. Walker, P. D., Andrade, R., Quinn, J. P., Bannon, M. J. Real-time analysis of preprotachykinin promoter activity in single cortical neurons. J Neurochem. 75, 882-885 (2000).
  19. Woods, G., Zito, K. Preparation of gene gun bullets and biolistic transfection of neurons in slice culture. J Vis Exp. , (2008).
  20. O’Brien, J. A., Lummis, S. C. Biolistic transfection of neuronal cultures using a hand-held gene gun. Nat Proc. 1, 977-981 (2006).
  21. Joshi, P., Dunaevsky, A. Gene gun transfection of hippocampal neurons. J Vis Exp. , (2006).
  22. Biewanga, J. E., Destree, O. H., Scharma, L. H. . J Neurosci Met. 71, 67-75 (1997).
check_url/2600?article_type=t

Play Video

Cite This Article
Foehring, R. C., Guan, D., Toleman, T., Cantrell, A. R. Whole Cell Recording from an Organotypic Slice Preparation of Neocortex. J. Vis. Exp. (52), e2600, doi:10.3791/2600 (2011).

View Video