Summary

Intraluminal Middle Cerebral Artery Occlusion (MCAO) Model for Ischemic Stroke with Laser Doppler Flowmetry Guidance in Mice

Published: May 08, 2011
doi:

Summary

The intraluminal middle cerebral artery occlusion (MCAO) model is the most frequent used model among experimental ischemic stroke models. Here we will demonstrate the entire model in detail with the guide of Laser Doppler flowmetry, and its representative results.

Abstract

Stroke is the third leading cause of death and the leading cause of disability in the world, with an estimated cost of near $70 billion in the United States in 20091,2. The intraluminal middle cerebral artery occlusion (MCAO) model was developed by Koizumi4 in 1986 to simulate this impactful human pathology in the rat. A modification of the MCAO method was later presented by Longa3. Both techniques have been widely used to identify molecular mechanisms of brain injury resulting from ischemic stroke and potential therapeutic modalities5. This relatively noninvasive method in rats has been extended to use in mice to take advantage of transgenic and knockout strains6,7. To model focal cerebral ischemia, an intraluminal suture is advanced via the internal carotid artery to occlude the base of the MCA. Retracting the suture after a specified period of time mimics spontaneous reperfusion, but the suture can also be permanently retained. This video will be demonstrating the two major approaches for performing intraluminal MCAO procedure in mice in a stepwise fashion, as well as providing insights for potential drawbacks and pitfalls. The ischemic brain tissue will subsequently be stained by 2,3,5-triphenyltetrazolium chloride (TTC) to evaluate the extent of cerebral infarction8.

Protocol

This protocol was approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Florida and is in compliance with the “Principle of Laboratory Animal Care” (NIH publication No. 86-23, revised 1985). 1. Materials Animals: Male C57BL/6 mice (Harlan Laboratories, Indianapolis, IN, USA) weighing 20–26 grams at the time of surgery. Anesthesia: Anesthesia machine: VetEquip inhalation anesthesia system (VetEquip Inc., Pleasan…

Discussion

The MCAO model is an established model that replicates cerebral ischemia in murine species. This model was first used in rats and thereafter adapted to mice. Avoiding craniectomy to eliminate the influence of surgical manipulation on blood brain barrier permeability and intracranial pressure is an advantage of this technique. However, many variables, such as strain-related differences10, size of suture tip11, duration of occlusion6, body temperature12, anesthesia13</su…

Disclosures

The authors have nothing to disclose.

Materials

Name of the reagent Type Company Catalogue number Comments (optional)
Male C57BL/6 mice Animal Harlan Laboratories, Indianapolis, IN, USA   20-26 grs
Dissection microscope Microscope Leica stereo Microscope MZ6   6.3:1 zoom
Fiber optic illuminator Illuminator TechniQuip Corp., Livermore, CA, USA   FO1–150
Isoflurane Anesthesia Baxter Pharmaceutics, Deerfield, IL 1001936060  
SuperCut Iris scissor, straight Surgical tool World Precision Instruments, Inc., Sarasota, FL, USA 14218  
Vannas micro-scissor, straight Surgical tool World Precision Instruments, Inc., Sarasota, FL, USA 14003  
Dumont fine tip forceps Surgical tool World Precision Instruments, Inc., Sarasota, FL, USA 503290  
Vessel clip Surgical tool World Precision Instruments, Inc., Sarasota, FL, USA 14120  
High Frequency Desiccator 900 Surgical tool World Precision Instruments, Inc., Sarasota, FL, USA 500397  
7-0 surgical Nylon monofilament suture Suture Ethicon, Inc., Somerville, NJ, USA 1647G Suture for occlusion
7-0 surgical Silk suture Suture Ethicon, Inc., Somerville, NJ, USA 7733G Suture for ligation
Silicone RTV adhesive Silicone rubber World Precision Instruments, Inc., Sarasota, FL, USA 1571  
Vetbond Tissue adhesive 3M Company, St Paul, MN, USA 70200746587  
Puralube Vet Ointment Eye ointment Pharmaderm, Melville, NY, USA    
Buprenorphine hydrochlorode Analgesics Hospira Inc., Lake Forest, IL, USA NDC 0409-2012-32  
Thermal Cautery Unit   World Precision Instruments, Inc., Sarasota, FL, USA 501292  
PeriFlux System 5000 TCD flowmetry Perimed, Stockholm, Sweeden    
BAT-12 Rectal thermometer World Precision Instruments, Inc., Sarasota, FL, USA BAT-12R  
T/PUMP, TP600 Thermal blanket Gaymar, NY, USA    
2,3,5-triphenyltetrazolium chloride Reagent Sigma-Aldrich Co., St Louis, MO, USA T8877  
Mice brain matrix slicer Brain slicer Zivic-Miller Lab., Inc., Allison Park, PA, USA BSMAS001-1  

References

  1. . Recommendations on stroke prevention, diagnosis, and therapy. Report of the WHO Task Force on Stroke and other Cerebrovascular Disorders. Stroke; a journal of cerebral circulation. 20, 1407-1431 (1989).
  2. Lloyd-Jones, D. Heart disease and stroke statistics–2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 119, e21-e181 (2009).
  3. Longa, E. Z., Weinstein, P. R., Carlson, S., Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke; a journal of cerebral circulation. 20, 84-91 (1989).
  4. Koizumi, J., Yoshida, Y., Nakazawa, T., Ooneda, G. Experimental studies of ischemic brain edema. I. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke. 8, 1-8 (1986).
  5. Clark, W. M., Lessov, N. S., Dixon, M. P., Eckenstein, F. Monofilament intraluminal middle cerebral artery occlusion in the mouse. Neurol Res. 19, 641-648 (1997).
  6. Fujii, M. Strain-related differences in susceptibility to transient forebrain ischemia in SV-129 and C57black/6 mice. . Stroke; a journal of cerebral circulation. 28, 1805-1810 (1997).
  7. Bederson, J. B. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke; a journal of cerebral circulation. 17, 1304-1308 (1986).
  8. Qi, X., Hosoi, T., Okuma, Y., Kaneko, M., Nomura, Y. Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol Pharmacol. 66, 899-908 (2004).
  9. Barone, F. C., Knudsen, D. J., Nelson, A. H., Feuerstein, G. Z., Willette, R. N. Mouse strain differences in susceptibility to cerebral ischemia are related to cerebral vascular anatomy. J Cereb Blood Flow Metab. 13, 683-692 (1993).
  10. Tureyen, K., Vemuganti, R., Sailor, K. A., Dempsey, R. J. Ideal suture diameter is critical for consistent middle cerebral artery occlusion in mice. Neurosurgery. 56, 196-200 (2005).
  11. Barber, P. A., Hoyte, L., Colbourne, F., Buchan, A. M. Temperature-regulated model of focal ischemia in the mouse: a study with histopathological and behavioral outcomes. Stroke; a journal of cerebral circulation. 35, 1720-1725 (2004).
  12. Kapinya, K. J., Prass, K., Dirnagl, U. Isoflurane induced prolonged protection against cerebral ischemia in mice: a redox sensitive mechanism?. Neuroreport. 13, 1431-1435 (2002).
check_url/2879?article_type=t

Play Video

Cite This Article
Ansari, S., Azari, H., McConnell, D. J., Afzal, A., Mocco, J. Intraluminal Middle Cerebral Artery Occlusion (MCAO) Model for Ischemic Stroke with Laser Doppler Flowmetry Guidance in Mice. J. Vis. Exp. (51), e2879, doi:10.3791/2879 (2011).

View Video