Summary

一个<em在体外系统来研究肿瘤休眠和转移性增长

Published: August 11, 2011
doi:

Summary

修改后的3 – D在体外培养系统是其中的几个重组基底膜的肿瘤细胞株的生长特性与休眠或增生的肿瘤细胞转移的辅助站点的行为相关<em>在体内</em>。

Abstract

乳腺癌复发往往遵循一个潜伏期长,其中有没有癌症的迹象,并转移可能不会成为多年后切除原发肿瘤的辅助治疗,直到临床明显。这种现象的一个可能的解释是,肿瘤细胞有种子的转移部位,耐常规疗法,并保持时间 1-4长时间处于休眠状态。

以前在辅助站点休眠癌细胞的存在已被描述为静态,既不增殖也不是孤立发生凋亡 5-7的细胞。此外,这些孤立的细胞已被证明传播从原发肿瘤的早期疾病进展8-10的阶段,并驻留在病人的骨髓血液和淋巴结1,4,11中生长被捕。因此,了解的机制,规范增殖状态的休眠或交换机是发现新的目标和干预措施,以防止疾病的复发的关键。然而,揭开肿瘤休眠开关调节转移性增长的机制已经阻碍了缺乏可用的模型系统。

在体内和体外模型系统研究进展肿瘤细胞的转移已被描述以前 1,12-14 。然而,这些模型系统并没有提供实时和高通量的方式进入孤处于休眠状态的肿瘤细胞增殖转移性疾病的出现触发什么机械的见解。最近,我们在体外系统开发的一个三维模型在细胞体内生长的特点,表现出休眠(D2.OR MCF7,K7M2 – AS.46)或增生(D2A1,MDA – MB – 231,K7M2)转移性行为在体内 。我们证明了,表现在体内肿瘤细胞在转移部位的休眠保持静态时,在一个3维(3D)基底膜提取物(BME)培养,而高度在体内转移的细胞很容易在三维培养增殖后,变量,但相对较短时期的平静。重要的是利用体外模型系统的三维,我们首次展示了ECM的成分,起着重要的调节是否处于休眠状态的肿瘤细胞会切换到增殖状态,并确认 体内研究15-17作用。因此,本报告中所描述的模型系统提供了在体外培养的方法,以模型的肿瘤休眠研究的微环境诱导的增殖生长的过渡。

Protocol

1。休眠和转移性肿瘤细胞株的细胞文化维护成长在10厘米的培养板包含贝科改良Eagle培养基(DMEM),高糖和10%胎牛血清休眠(D2OR / MCF7/K7M2-AS.46)和转移性肿瘤细胞(D2A1 / MDA – MB – 231 / K7M2)( FB)和抗生素。一旦细胞达到70%至80%汇合,进行以下的检测。 2。培养细胞处于休眠状态(静态)和转移(扩散)的肿瘤细胞增殖实验在一个三维生物医学工程系统<p cla…

Discussion

的基本机制,保持传播的肿瘤细胞处于休眠状态或在其过渡到转移性增长的结果仍是未知。这种现象已经非常困难的研究在人类患者4,12和少数临床前模型已开发来解决这个问题。然而, 在体内体外模型系统,为肿瘤休眠的 ​​一些特点 (1,12审查)。然而, 在体内肿瘤休眠模式主要用来验证规范肿瘤休眠的 ​​潜在机制,但不适合进行实时探索一个单一?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究是由国家癌症研究所的院内研究计划中的一部分支持。

Materials

Name of the reagent Company Catalogue number Comments
DMEM high glucose Invitrogen 11965-118  
DMEM low glucose Invitrogen 11885-092  
Fetal bovine serum (FBS) Invitrogen 10091-148  
Growth factor-reduced 3-D Cultrex Basement Membrane Extract Trevigen Inc.   Protein concentration between 14-15mg/ml
D2.0R and D2A1 cell lines     5,19
K7M2 and K7M2AS1.46 cells     20
MCF-7 and MDA-MB-231 breast cancer cells ATCC    
An 8 chamber glass slide system (Lab -TEK, Thermo scientific) 177402  
Cell Titer 96 AQueous One Solution cell proliferation assay kit Promega G3580  
VECTASHIELD mounting medium with DAPI Vector Laboratories Inc. H-1200  
Normal donkey serum Jackson ImmunoResearch 017-000-121  
Elisa Plate Reader Bio-Tec   Record 490nm
Confocal microscope Zeiss-LSM-510   Magnification x63

References

  1. Aguirre-Ghiso, J. A. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer. 7, 834-846 (2007).
  2. Pantel, K., Woelfle, U. Micrometastasis in breast cancer and other solid tumors. J Biol Regul Homeost Agents. 18, 120-125 (2004).
  3. Naumov, G. N. Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res Treat. 82, 199-206 (2003).
  4. Klein, C. A. Framework models of tumor dormancy from patient-derived observations. Curr Opin Genet Dev. , (2010).
  5. Naumov, G. N. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 62, 2162-2168 (2002).
  6. Townson, J. L., Chambers, A. F. Dormancy of solitary metastatic cells. Cell Cycle. 5, 1744-1750 (2006).
  7. Chambers, A. F., Groom, A. C., MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2, 563-572 (2002).
  8. Pantel, K. Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst. 85, 1419-1424 (1993).
  9. Demicheli, R. Tumour dormancy: findings and hypotheses from clinical research on breast cancer. Semin Cancer Biol. 11, 297-306 (2001).
  10. Braun, S. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med. 353, 793-802 (2005).
  11. Pantel, K., Alix-Panabieres, C., Riethdorf, S. Cancer micrometastases. Nat Rev Clin Oncol. 6, 339-351 (2009).
  12. Goss, P. E., Chambers, A. F. Does tumour dormancy offer a therapeutic target. Nat Rev Cancer. 10, 871-877 (2010).
  13. Mendoza, A. Modeling metastasis biology and therapy in real time in the mouse lung. J Clin Invest. 120, 2979-2988 (2010).
  14. Naumov, G. N. A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst. 98, 316-325 (2006).
  15. Barkan, D. Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res. 70, 5706-5716 (2010).
  16. Barkan, D., Green, J. E., Chambers, A. F. Extracellular matrix: A gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer. , (2010).
  17. Barkan, D. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 68, 6241-6250 (2008).
  18. Debnath, J., Muthuswamy, S. K., Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 30, 256-268 (2003).
  19. Morris, V. L. Mammary carcinoma cell lines of high and low metastatic potential differ not in extravasation but in subsequent migration and growth. Clin Exp Metastasis. 12, 357-367 (1994).
  20. Khanna, C. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med. 10, 182-186 (2004).
check_url/2914?article_type=t

Play Video

Cite This Article
Barkan, D., Green, J. E. An In Vitro System to Study Tumor Dormancy and the Switch to Metastatic Growth. J. Vis. Exp. (54), e2914, doi:10.3791/2914 (2011).

View Video