Summary

单侧颈脊髓损伤的挫伤模型,利用无限的地平线冲击

Published: July 24, 2012
doi:

Summary

描述一个可靠和可重复的方式来生产使用无限的地平线撞击宫颈单方面脊髓损伤。该方法采用自定义设计的框架的优势和取缔,以稳定脊柱。标准化的程序和损伤生物力学参数足够和持续的伤害结果。

Abstract

虽然大多数人的脊髓损伤,脊髓型颈椎病的发生,实验室研究的绝大多数员工在胸段脊髓受伤的脊髓损伤(SCI)的动物模型。此外,因为大多数人的脊髓损伤发生钝,非穿透性创伤(如机动车事故,运动伤害),脊髓被猛烈袭击流离失所的骨或软组织的结果,多数脊髓损伤的研究人员认为临床最相关的损伤模型是那些在脊髓迅速被撞伤。因此,在他们的方式对人类翻译的新疗法的临床前评价的重要的一步是评估其疗效挫伤脊髓损伤模型内脊髓型颈椎病。在这里,我们描述的技术方面和解剖和行为产生的单方面颈椎脊髓挫伤模型的成果,它采用了无限的地平线脊髓损伤撞击。

在C5 SD大鼠行单侧椎板左片面。以优化生物力学,功能和组织损伤模型结果的重复性,我们挫伤脊髓使用150 kdyn,影响力,22.5°(22.5°旋转的动物)的影响轨迹,影响位置关闭1.4毫米的中线。功能恢复使用缸饲养试验,阶梯测试水平,疏导长达6周的试验和改良蒙托亚的楼梯测试评估后,其中的脊髓进行了评估组织为白色和灰色的事情备用。

这里的损伤模型赋予一致的和可再生的生物力学部队到脊髓,任何实验性脊髓损伤模型的一个重要特征。在离散组织损伤脊髓侧半这结果主要包含到T他同侧伤害。伤害动物的耐受性良好,但在前肢的功能是在损伤后的周显著和持续的赤字。颈椎单方面损伤模型,这里可能是那些希望评估具有潜力的治疗之前,人类翻译研究的资源。

Protocol

1。成立控股动物和夹具设计的框架框架和钳举行动物是定制设计,以容纳无限的地平线(IH)脊髓损伤冲击。 框架的基础是切成以下尺寸(30.2厘米×20.3厘米×1.3厘米),以适应来中转设备( 图1A)标准表指南支架的铝制平台。 四Flexaframe支持脚踏板(费希尔科学,多伦多,ON)连接平台和八个Flexaframe支持棒(尔科技,多伦多,30.5厘米)8 Flexaframe支持连接器( <str…

Discussion

在本文中,我们描述了颈椎的单方面挫伤模型,使用在150 kdyn,关闭垂直角为22.5°,和一个1.4毫米的中线外侧目的的力量无限的地平线(IH)的冲击。通过这些设置,我们能够产生持续的行为,在所载主要同侧的实质破坏,同侧前肢的赤字,它出现相当大的损害发生地区的红核脊髓,网状,前庭和皮质脊髓束将有望运行。这种模式的发展发生了一系列的三个实验确定最佳的伤害力,影响中线的位置…

Disclosures

The authors have nothing to disclose.

Materials

Name of the equipment Company Catalogue number Comments
Infinite Horizon Impactor Precision Systems and Instrumentation IH-0400  
Aluminum metal sheet Metalsupermarlets.com APT6061/500  
Flexaframe support foot plates Fishers Scientific 1466625Q  
Flexaframe support rods Fishers Scientific 1466610GQ  
Flexaframe Support Connectors Fishers Scientific 1466620Q  
Clamp1 Custom made   Choo et al., 2009
Metal holders Custom made   See above
Impactor tip Custom made   Diameter: 1.15 mm
Stereotaxic frame David Kopf Instruments Model 900  
Cylinder Level YIJIA TOOLS YJ-SL0620  
Microscope Leica   Model #: MZ8
Laboratory scissor jack VWR 12620-902  

References

  1. Lee, J. H., Tigchelaar, S., Liu, J., Stammers, A. M., Streijger, F., Tetzlaff, W., Kwon, B. K. Lack of neuroprotective effects of simvastatin and minocycline in a model of cervical spinal cord injury. Exp. Neurol. 225, 219-230 (2010).
  2. Kwon, B. K., Hillyer, J., Tetzlaff, W. Translational research in spinal cord injury: a survey of opinion from the SCI community. J. Neurotrauma. 27, 21-33 (2010).
  3. Gensel, J. C., Tovar, C. A., Hamers, F. P., Deibert, R. J., Beattie, M. S., Bresnahan, J. C. Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats. J. Neurotrauma. 23, 36-54 (2006).
  4. Kwon, B. K., Borisoff, J. F., Tetzlaff, W. Molecular targets for therapeutic intervention after spinal cord injury. Mol. Interv. 2, 244-258 (2002).
  5. Allen, A. R. Surgery of experimental lesions of spinal cord equivalent to crush injury of fracture dislocation. J. Am. Med. Assoc. 57, 878-880 (1911).
  6. Basso, D. M., Beattie, M. S., Bresnahan, J. C. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol. 139, 244-256 (1996).
  7. Gruner, J. A. A monitored contusion model of spinal cord injury in the rat. J. Neurotrauma. 9, 123-128 (1992).
  8. Choo, A. M., Liu, J., Liu, Z., Dvorak, M., Tetzlaff, W., Oxland, T. R. Modeling spinal cord contusion, dislocation, and distraction: characterization of vertebral clamps, injury severities, and node of Ranvier deformations. J. Neurosci. Methods. 181, 6-17 (2009).
  9. Whishaw, I. Q., Piecharka, D. M., Drever, F. R. Complete and partial lesions of the pyramidal tract in the rat affect qualitative measures of skilled movements: impairment in fixations as a model for clumsy behavior. Neural. Plast. 10, 77-92 (2003).
  10. Jones, T. A., Schallert, T. Overgrowth and pruning of dendrites in adult rats recovering from neocortical damage. Brain Res. 581, 156-160 (1992).
  11. Liu, Y., Kim, D., Himes, B. T., Chow, S. Y., Schallert, T., Murray, M., Tessler, A., Fischer, I. Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J. Neurosci. 19, 4370-4387 (1999).
  12. Schallert, T., Fleming, S. M., Leasure, J. L., Tillerson, J. L., Bland, S. T. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology. 39, 777-787 (2000).
  13. Soblosky, J. S., Song, J. H., Dinh, D. H. Graded unilateral cervical spinal cord injury in the rat: evaluation of forelimb recovery and histological effects. Behav. Brain Res. 119, 1-13 (2001).
  14. McKenna, J. E., Prusky, G. T., Whishaw, I. Q. Cervical motoneuron topography reflects the proximodistal organization of muscles and movements of the rat forelimb: a retrograde carbocyanine dye analysis. J. Comp. Neurol. 419, 286-296 (2000).
  15. Sandrow, H. R., Shumsky, J. S., Amin, A., Houle, J. D. Aspiration of a cervical spinal contusion injury in preparation for delayed peripheral nerve grafting does not impair forelimb behavior or axon regeneration. Exp. Neurol. 210, 489-500 (2008).
  16. Popovich, P. G., Lemeshow, S., Gensel, J. C., Tovar, C. A. Independent evaluation of the effects of glibenclamide on reducing progressive hemorrhagic necrosis after cervical spinal cord injury. Exp. Neurol. 233, 615-622 (2012).
  17. Dunham, K. A., Siriphorn, A., Chompoopong, S., Floyd, C. L. Characterization of a graded cervical hemicontusion spinal cord injury model in adult male rats. J. Neurotrauma. 27, 2091-2106 (2010).
  18. Lee, J. H., Roy, J., Sohn, H. M., Cheong, M., Liu, J., Stammers, A. T., Tetzlaff, W., Kwon, B. K. Magnesium in a polyethylene glycol formulation provides neuroprotection after unilateral cervical spinal cord injury. Spine (Phila Pa 1976). 35, 2041-2048 (2010).
  19. Alstermark, B., Isa, T., Lundberg, A., Pettersson, L. G., Tantisira, B. The effect of low pyramidal lesions on forelimb movements in the cat. Neurosci. Res. 7, 71-75 (1989).
check_url/3313?article_type=t

Play Video

Cite This Article
Lee, J. H., Streijger, F., Tigchelaar, S., Maloon, M., Liu, J., Tetzlaff, W., Kwon, B. K. A Contusive Model of Unilateral Cervical Spinal Cord Injury Using the Infinite Horizon Impactor. J. Vis. Exp. (65), e3313, doi:10.3791/3313 (2012).

View Video