Summary

实验小鼠模型阴道接种和样品采集的协议念珠菌阴道炎

Published: December 08, 2011
doi:

Summary

在评价中使用的关键技术<em>念珠菌</em>阴道炎在实验动物模型进行了描述。该方法将允许从阴道标本和淋巴细胞的快速收集,排水腰淋巴结。这些技术可能会引起女性下生殖道的其它疾病的小鼠模型。

Abstract

念珠菌引起的外阴阴道念珠菌病(VVC),是一个较低的女性生殖道,在他们 18,32-34的生育年龄影响其他健康妇女中约75%的真菌感染。诱发因素包括生殖激素水平的抗生素使用,未经控制的糖尿病和干扰因怀孕,口服避孕药或激素替代疗法 33,34 。复发性VVC(RVVC),定义为三个或三个以上,每年发作,影响一个单独的5至8%的妇女没有诱发因素33。

的VVC的实验小鼠模型已经建立,并用于研究的发病机制 粘膜念珠菌3,4,11,16,17,19,21,25,37宿主反应。这种模式也得到了测试体内 13,24潜在的抗真菌治疗。该模型要求的动物保持在一个国家选择pseudoestrusimal 念珠菌定植/感染6,14,23。在这种情况下,将已接种过的动物身上检测到的几个星期到几个月的阴道霉菌负担。过去的研究表明一个非常高的动物模型和人类感染的相对免疫和生理特性3,16,21之间的平行。差异,但是,包括念珠菌作为阴道正常菌群的缺乏和中性在小鼠的阴道pH值。

在这里,我们展示了一系列的鼠标阴道炎模型的主要方法,包括阴道接种,迅速收集阴道标本,评估阴道的真菌负担,细胞提取/隔离的组织筹备工作。其次是阴道灌洗液真菌的负担,及引流淋巴结白细胞产量的选民代表结果。随着使用麻醉剂,灌洗样本可以在多个时间点收集纵向评价相同的小鼠感染/定植。此外,这种模式要求没有启动感染的免疫抑制剂,使定义的主机条件下的免疫学研究。最后,模型和每种技术的介绍,这里可能引起的方法来研究降低女性生殖道(细菌,寄生虫,病毒)和各自的局部或全身的宿主防御的其他传染病。

Protocol

1。阴道白色念珠菌接种接种前三天,同时抑制动物暴露腹部,注入100μL芝麻油含有0.1-0.5毫克β-雌二醇皮下注射小腹。前进针约5至10毫米,外侧的皮肤,以尽量减少注射部位的泄漏。 在这个模型中,由于接近生殖道的最佳皮下注射雌激素在小腹。有效剂量可能会有所不同小鼠品系,年龄或雌激素衍生物。在以往的研究中使用CBA – J(H -κ),C3H/HeN(H -κ),C57BL / <…

Discussion

念珠菌性阴道炎的实验小鼠模型已经建立,在过去的几十年历史念珠菌的黏膜宿主反应,以及用于研究测试抗真菌疗法3,4,11,13,16,17,19,21,2425,37。协议提出,这里纳入效率和劳动密集程度较低的方法,并出现念珠菌性阴道炎的最优化模型系统描述迄今为止。这些技术使真菌负担和收集阴道标本的快速定量分析。此外,以往的研究测试小鼠的几个haplotypic株(N =…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是支持R01 AI32556(NIAID的国立卫生研究院)。这项工作也得到了支持路易斯安那疫苗中部和南部路易斯安那州路易斯安那州摄政理事会主办的传染病研究学会的部分。

Materials

Name of the reagent Company Catalogue number Comments
Female CBA/J mice Charles River Laboratories 01C38 5-6 weeks of age
Candida albicans (3153A) National Collection of Pathogenic Fungi, UK NCPF3153  
Sesame oil Sigma-Aldrich S3547 Does not need to be pre-sterilized before use
Β-estradiol 17-valerate Sigma-Aldrich E1631 0.1-0.5mg in sesame oil
Phytone peptone Becton Dickinson 211906 Supplement with 0.1% glucose
Trypan blue solution Sigma-Aldrich T8154  
Sabouraud dextrose agar Becton Dickinson 211584  
Collagenase type IV Sigma-Aldrich C5138 0.25%
Dispase Invitrogen 17105-041 1.7 U/ml
Wire mesh screens TWP 060X060S0065W36T No. 60 mesh, stainless
Hanks’ balanced salt solution Invitrogen 24020-117  
CytoPrep fixative Fisher Scientific 12-570-10 Preserves smear slides
Papanicolaou stain EA-65 EMD Chemicals 7054X-85  
Papanicolaou stain OG-6 EMD Chemicals 7052X-85  
Harris’ Alum hematoxylin EMD Chemicals 638A-85  
Isoflurane Baxter Healthcare NDC 10019-773-60 Used with isoflurane vaporizer or in a drop system closed anesthetic chamber

References

  1. Abraham, M. C. Inducible immunity to Trichomonas vaginalis in a mouse model of vaginal infection. Infect. Immun. 64, 3571-3571 (1996).
  2. Black, C. A. Major histocompatibility haplotype does not impact the course of experimentally induced murine vaginal candidiasis. Lab. Anim. Sci. 49 (6), 668-668 (1999).
  3. Black, C. A. Acute neutropenia decreases inflammation associated with murine vaginal candidiasis but has no effect on the course of infection. Inf. Immun. 66, 1273-1273 (1998).
  4. Black, C. A. Increased severity of Candida vaginitis in BALB/c nu/nu mice versus the parent strain is not abrogated by adoptive transfer of T cell enriched lymphocytes. J. Reprod. Immunol. 45, 1-1 (1999).
  5. Buchannan, D. L. Role of stromal and epithelial estrogen receptors in vaginal epithelial proliferation, stratification, and cornification. Endocrinology. 139 (10), 4345-4345 (1998).
  6. Clemons, K. V. Genetic susceptibility of mice to Candida albicans vaginitis correlates with host estrogen sensitivity. Infect. Immun. 72, 4878-4878 (2004).
  7. Conrady, C. D., Halford, W. P., Carr, D. J. Loss of the type I interferon pathway increases vulnerability of mice to genital Herpes simplex virus 2 infection. J. Virol. 85 (4), 1625-1625 (2011).
  8. Cunha, G. R., Cooke, P. S., Kurita, T. Role of estromal-epithelial interaction in hormonal responses. Arch Histol Cytol. 67 (5), 417-417 (2004).
  9. Enjalbert, B. A multifunctional, synthetic Caussia princeps luciferase reporter for live imaging of Candida albicans infections. 77 (11), 4847-4847 (2009).
  10. Feinen, B. Critical role of Th17 responses in a murine model of Neisseria gonorrhoeae genital infection. Mucosal Immunol. 3 (3), 312-312 (2010).
  11. Fidel, P. L. Distinct protective host defenses against oral and vaginal candidiasis. Med. Mycol. 40, 359-359 (2002).
  12. Fidel, P. L. An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis. Infect. Immun. 72, 2939-2939 (2004).
  13. Fidel, P. L., Cutright, J. L., Sobel, J. D. Efficacy of D0870 treatment of experimental Candida vaginitis. Antimicrob. Agents. Chemother. 41, 1455-1455 (1997).
  14. Fidel, P. L., Cutright, J. L., Steele, C. Effects of Reproductive hormones on experimental vaginal candidiasis. Infect. Immun. 68, 651-651 (2000).
  15. Fidel, P. L. A murine model of Candida glabrata vaginitis. J. Inf. Dis. 173, 425-425 (1996).
  16. Fidel, P. L. Analysis of vaginal cell populations during experimental vaginal candidiasis. Inf. Immun. 67, 3135-3135 (1999).
  17. Fidel, P. L., Lynch, M. E., Sobel, J. D. Candida-specific cell-mediated immunity is demonstrable in mice with experimental vaginal candidiasis. Infect. Immun. 61, 1990-1990 (1993).
  18. Fidel, P. L., Sobel, J. D. Immunopathogenesis of recurrent vulvovaginal candidiasis. Clin. Microbiol. Rev. 9. 9, 335-335 (1996).
  19. Fidel, P. L., Sobel, J. D., Zak, O., Sande, M. . Murine Models of Candida Vaginal Infections, In Experimental models in antimicrobial chemotherapy. , 741-748 (1999).
  20. Fidel, P. L., Vazquez, J. A., Sobel, J. D. Candida glabrata: Review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin. Microbiol. Rev. 12, 80-80 (1999).
  21. Fulurija, A., Ashman, R. B., Papadimitriou, J. M. Neutrophil depletion increases susceptibility to systemic and vaginal candidiasis in mice, and reveals differences between brain and kidney in mechanisms of host resistance. Microbiology. 142, 3487-3487 (1996).
  22. Gill, N. NK cells require type I IFN receptor for antiviral responses during genital HSV-2 infection. Cell Immunol. 269 (1), 29-29 (2011).
  23. Hamad, M., Abu-Elteen, K. H., Ghaleb, M. Estrogen-dependent induction of persistent vaginal candidosis in naive mice. Cell. Immunol. 47 (7), 304-304 (2004).
  24. Hamad, M. Utility of the oestrogen-dependent vaginal candidosis murine model in evaluating the efficacy of various therapies against vaginal Candida albicans infection. Mycoses. 49 (2), 104-104 (2006).
  25. LeBlanc, D. M., Barousse, M. M., Fidel, P. L. A role for dendritic cells in immunoregulation during experimental vaginal candidiasis. Infect. Immun. 74, 3213-3213 (2006).
  26. McGrory, T., Garber, G. E. Mouse intravaginal infection with Trichomonas vaginalis and role of Lactobacillus acidophilus in sustaining infection. Infect. Immun. 60, 2375-2379 (1992).
  27. Naglik, J. R., Fidel, P. L., Odds, F. C. Animal models of mucosal Candida infection. FEMS. Microbiol. Lett. 283 (2), 129-129 (2008).
  28. Nomanbhoy, F. Vaginal and oral epithelial cell anti-Candida activity. Inf. Immun. 70, 7081-7081 (2002).
  29. Pietrella, D. A beta-glucan-conjugate vaccine and anti-beta-glucan antibodies are effective against murine vaginal candidiasis as assessed by a novel in vivo imaging technique. Vaccine. 28 (7), 1717-1717 (2010).
  30. Redondo-Lopez, V., Cook, R. N., Sobel, J. D. Emerging role of Lactobacilli in the control and maintenance of the vaginal bacterial microflora. Rev Infect Dis. 12 (5), 856-856 (1990).
  31. Saavedra, M. Local production of chemokines during experimental vaginal candidiasis. Inf. Immun. 67, 5820-5820 (1999).
  32. Sobel, J. D. Pathogenesis and epidemiology of vulvovaginal candidiasis. Ann. N. Y. Acad. Sci. 544, 547-547 (1988).
  33. Sobel, J. D. Pathogenesis and treatment of recurrent vulvovaginal candidiasis. Clin. Infect. Dis. 14, S148-S153 (1992).
  34. Sobel, J. D. Vulvovaginal candidiasis: Epidemiologic, diagnostic, and therapeutic considerations. Am. J. Obstet. Gynecol. 178 (2), 203-203 (1998).
  35. Song, W. Local and humoral immune responses against primary and repeat Neisseria gonorrhoeae genital tract infections of 17β-estradiol-treated mice. Vaccine. 26, 5741-5741 (2008).
  36. Taylor, B. N. In vivo virulence of Candida albicans isolates causing mucosal infections in people infected with the human immunodeficiency virus. J. Infect. Dis. 182, 955-955 (2000).
  37. Taylor, B. N., Saavedra, M., Fidel, P. L. Local Th1/Th2 cytokine production during experimental vaginal candidiasis. Med. Mycol. 38, 419-419 (2000).
  38. Tirabassi, R. S. A mucosal vaccination approach for herpes simplex virus type 2. Vaccine. 29 (5), 1090-1090 (2011).
  39. Broeck, W. V. a. n. d. e. n., Derore, A., Simoens, P. Anatomy and nomenclature of murine lymph nodes: descriptive and nomenclatory standardization in BALB/cAnNCrl mice. J. Immunol. Methods. 312 (1-2), 12-12 (2006).
  40. Wormley, F. L., Chaiban, J., Fidel, P. L. Cell adhesion molecule and lymphocyte activation marker expression during experimental vaginal candidiasis. J. Immunol. Methods. 69, 5072-5072 (2001).
  41. Yano, J. Epithelial cell-derived S100 calcium-binding proteins as key mediators in the hallmark acute neutrophil response during Candida vaginitis. Infect. Immun. 78 (12), 5126-5126 (2010).

Play Video

Cite This Article
Yano, J., Fidel, Jr., P. L. Protocols for Vaginal Inoculation and Sample Collection in the Experimental Mouse Model of Candida vaginitis. J. Vis. Exp. (58), e3382, doi:10.3791/3382 (2011).

View Video